Mass Transfer in Tubular Ceramic Membranes for Polluted Water Treatment - Numerical Simulation

Abstract:

Article Preview

Innovative technologies are needed to attend the increasingly strict requirements for produced water treatment, since most of the separation processes are limited to particles larger than 10 μm. Separation processes using ceramic membranes are attracting great interest from academic and industrial community. Nevertheless, few studies, especially numerical, regarding the inorganic membrane’s application for the polluted water separation have been reported. In the present work, therefore, a study of fluid-flow dynamics for a laminar regime in porous tubes (tubular porous ceramic membrane) has been performed. The mass, momentum and mass transport conservation equations were solved with the aid of a structured mesh using ANSYS CFX commercial package. The velocity of local permeation was determined using the resistance in series model. The specific resistance of the polarized layer was obtained by Carman-Kozeny equation. The numerical results were evaluated and compared with the results available in the literature, where by a good agreement with each other was found. The numerical results, obtained by the proposed shell and tubular membrane separation module, indicate that there is facilitation of mass transfer and hence a reduction in the thickness of the polarized boundary layer occurs.

Info:

Periodical:

Diffusion Foundations (Volume 20)

Edited by:

João Delgado and A.G. Barbosa de Lima

Pages:

16-33

Citation:

J. Saraiva de Souza et al., "Mass Transfer in Tubular Ceramic Membranes for Polluted Water Treatment - Numerical Simulation", Diffusion Foundations, Vol. 20, pp. 16-33, 2019

Online since:

December 2018

Export:

Price:

$38.00

[1] J. S. Souza, M. K. N. Paiva, F. P. M. Farias, S. R. Farias Neto, A.G. B. Lima, Hydrocyclone applications in produced water: a steady-state numerical analysis, Braz. J. Petroleum Gas 6(3), (2012) 133–143.

DOI: https://doi.org/10.5419/bjpg2012-0011

[2] L. Svarovsky, Solid-Liquid Separation. 2. ed. v. 10, Butterworths, London, (2000).

[3] J. S. Souza, S. R. Farias Neto, A. G. B. Lima, Liquid separation by hydrocyclones: Termfluidynamics. NEA Novas Edições Acadêmicas, Germany, 2015. (In Portuguese).

[4] S. R. Lautenschlager, S. S. Ferreira Filho, O. Pereira, Mathematical modeling and operational optimization of ultrafiltration membrane processes, Eng. Sanit. Ambient., 14(2) (2009) 215–222. (In Portuguese).

[5] M. A.A. Zaini, R. G. Holdich, I.W. Cumming, Crossflow microfiltration of oil in water emulsion via tubular filters: evaluation by mathematical models on droplet deformation and filtration, Jurnal Teknologi, 53(2) (2010) 19–28.

DOI: https://doi.org/10.11113/jt.v53.102

[6] S. R. H. Abadi, M. R. Sebzari, M. Hemati, F. Rekabdar, T. Mohammadi, Ceramic membrane performance in microfiltration of oily wastewater, Desalin. 265(1-3) (2011) 222–228.

DOI: https://doi.org/10.1016/j.desal.2010.07.055

[7] T. M. Vieira, J. S. Souza, E. S. Barbosa, A. L. Cunha, S. R. Farias Neto, A. G. B. Lima, Numerical study of oil/water separation by ceramic membranes in the presence of turbulent flow, Advances Chem. Eng. Sci., 2(2) (2012) 257–265.

DOI: https://doi.org/10.4236/aces.2012.22030

[8] G. Belfort, R. H. Davis, A. L. Zydney, The behavior of suspensions and macromolecular solutions in crossflow microfiltration, J. Membr. Sci., 96(1-2) (1994) 1–58.

DOI: https://doi.org/10.1016/0376-7388(94)00119-7

[9] R.W. Baker, Membrane Technology and Applications, 2nd edition, John Wiley & Sons Ltd, California, (2004).

[10] S. T. Hwang, K. Kammermeyer, Membranes in Separation, John Wiley & Sons Ltd, Canada, (1975).

[11] R.H. Davis, J. D. Sherwood, A similarity solution for steady – state crossflow microfiltration, Chem. Eng. Sci., 43(11) (2000) 3203–3209.

[12] A. Pak, T. Mohammadi, S.M. Hosseinalipour, V. Allahdini, CFD modeling of porous membranes, Desalin. 222(1-3) (2008) 482–488.

DOI: https://doi.org/10.1016/j.desal.2007.01.152

[13] A. L. Cunha, J. S. Souza, S. R. Farias Neto, A. G. B. Lima, E. S. Barbosa, Separation process by porous membranes: A numerical investigation, Advances Mech. Eng. 2014 (2014) 1–9.

[14] K. Damak, A. Ayadi, P. Schmitz, B. Zeghmati, Modeling of crossflow membrane separation processes under laminar flow conditions in tubular membrane, Desalin. 168 (2004) 231–239.

DOI: https://doi.org/10.1016/j.desal.2004.07.003

[15] K. Damak, A. Ayadi, B. Zeghmati, P. Schmitz, Concentration polarization in tubular membranes - a numerical approach, Desalin. 171(2) (2005) 139-153.

DOI: https://doi.org/10.1016/j.desal.2004.05.002

[16] K. Damak, A. Ayadi, B. Zeghmati, P. Schmitz, New Navier-Stokes and Darcy's law combined model for fluid flow in crossflow filtration tubular membranes, Desalin. 161 (2004) 67-77.

DOI: https://doi.org/10.1016/s0011-9164(04)90041-0

[17] E. Pellerin, E. Michelitsh, K. Darcovich, S. Lin, C.M. Tam, Turbulent transport in membrane modules by CFD simulation in two dimensions, J. Membr. Sci. 100(2) (1995) 139–153.

DOI: https://doi.org/10.1016/0376-7388(94)00250-3

[18] M. Rahimi, S.S. Madaeni, K. Abbasi, CFD modeling of permeate flux in cross-flow microfiltration membrane, J. Membr. Sci. 255(1-2) (2005) 23–31.

DOI: https://doi.org/10.1016/j.memsci.2005.01.024

[19] S. Ahmed, M. T. Seraji, J. Jahedi, M.A. Hashib, CFD simulation of turbulence promoters in a tubular membrane channel, Desalin. 276(1-3) (2011) 191–198.

DOI: https://doi.org/10.1016/j.desal.2011.03.045

[20] J.S. Souza, Theoretical study of the microfiltration process in ceramic membranes, Doctoural Thesis in Process Engineering, Federal University of Campina Grande, Campina Grande, Paraiba, Brazil, 2014. (In Portuguese).

DOI: https://doi.org/10.21475/ajcs.17.11.06.p569