Multiphase Fluid Flow in Porous-Fibrous Media: Fundamentals, Mathematical Modeling and Applications on Polymeric Composites Manufacturing


Article Preview

This work provides information about polymer composite manufacturing by using liquid composite material molding, with particular reference to resin transfer molding process (RTM). Herein, several topics related to porous media, fluid flow, mathematical modeling, computational methods, composite manufacturing and industrial applications were presented. Simulation of resin flow into a fibrous (reinforcement) inserted in a parallelepiped mold has been performed, using the Ansys FLUENT® software, and different results of resin volumetric fraction, stream lines and pressure distribution inside the mold, and volumetric fraction always flow rate (inlet and outlet gates) of the resin, as a function of filling time, have been presented and discussed.



Diffusion Foundations (Volume 20)

Edited by:

João Delgado and A.G. Barbosa de Lima




T.R. N. Porto et al., "Multiphase Fluid Flow in Porous-Fibrous Media: Fundamentals, Mathematical Modeling and Applications on Polymeric Composites Manufacturing", Diffusion Foundations, Vol. 20, pp. 55-77, 2019

Online since:

December 2018




[1] O. Boer, Theory of Porous Media, first ed., Springer-Verlag, Berlin Heidelberg, Berlin, (2000).

[2] A.N. Donald, A. Bejan, Convection in Porous Media, fourth ed., Springer Science +Business Media, New York, London, (2013).

[3] F.A. Acosta G., A.H. Castillejos E., J.M. Almanza R., A. Flores V., Analysis of liquid flow through ceramic porous media used for molten metal filtration, Metallurgical Mater. Trans. B. 26B (1995) 159-171.


[4] J.P. Thad, Gas filtration, in: P. J. Brown, C. L. Cox (Eds.), Fibrous Filter Media, Elsevier Ltd, Duxford, UK, 2017, pp.18-41.

[5] A. Nakayama, F. Kuwahara, W. Liu, A general set of bioheat transfer equations based on the volume averaging theory, in: K.Vafai (Ed.), Porous Media Applications in Biological Systems and Biotechnology, CRC Press Taylor & Francis Group, Boca Ratón, EUA, 2010, pp.1-31.


[6] S. G. Advani, K. Hsiao, Transport phenomena in liquid composites molding processes and their roles in process control and optimization, in: K. Vafai (Ed.), Porous Media, Taylor & Francis Group, Boca Ratón, EUA, 2005, pp.573-606.


[7] K. Ma, G. Ren, K. Mateen, D. Morel, P. Cordelier, Literature review of modeling technics for foam flow through porous media, SPE improved Oil Recovery Symposium, Tulsa, Oklahoma, USA, 12-16 April, 2014. 25 pp.


[8] C.K. Chen, S.W. Hsiao, Transport phenomena in enclosed porous cavities, in: D. B. Inghan, I. Pop(Eds.), Transport Phenomena in Porous Media, Elsevier Science Ltd., Oxford, UK, 1998, pp.40-65.


[9] C.M.R. Franco, A. G. B. Lima, Intermittent drying of porous media: A review, Diff. Found. 7 (2016) 1-13.

[10] C.T. Hsu, Dynamic modeling of convective heat transfer in porous media, in: K.Vafai (Ed.), Handbook of Porous Media, Taylor & Francis Group, Boca Ratón, EUA, 2005, pp.40-79.

[11] M. A. Al-Nimr, M. K. Alkan, Basic fluid flow problems in porous media, J. Porous Media. 3(1) (2000) 45- 59.


[12] F.A.L. Dullien, Capillary and viscous effects in porous media, in: K. Vafai (Ed.), Handbook of Porous Media, Marcel Dekker Inc, Switzerland, 2000, pp.53-112.

[13] W.D. Callister Jr, D.G. Rethwisch, Materials Science and Engineering: An Introduction, 8th ed., John Wiley & Sons, New Jersey, EUA, (2010).

[14] V.V. Vasilie, E.V. Morozov, Mechanics and Analysis of Composite Materials, first ed., Elsevier Science, Oxford, UK, (2001).

[15] S. Tsanzalis, P. Karapappas, A. Vavouliotis, P. Tsotra, A. Paipetis, V. Kostopoulos, K. Friedrich, Enhancement of the mechanical performance of an epoxy resin and fiber reinforced epoxy resin composites by the introduction of CNF and PZT particles at the microscale, Compos.: Part A. 38(2007).


[16] S. Mall; D.W. Katwyk, R.L. Bolick; A.D. Kelkar; D.C. Davis, Tension–compression fatigue behavior of a H-VARTM manufactured unnotched and notched carbon/epoxy composite, Compos. Struct., 90 (2009) 201–207.


[17] A. Shojaei, S.R. Ghaffarian, S.M.H. Karimian, Modeling and simulation approaches in the resin transfer molding process: A review, Polym. Compos., 24 (4) (2003) 525-544.


[18] M.K. Yoon, J. Baidoo, J.W. Gillespie Jr., D. Heider, Vacuum assisted resin transfer molding (vartm) process incorporating gravitational effects: A closed-form solution, J. Compos. Mater., 39(24) (2005) 2227-2241.


[19] A.C. Garay, V. Heck1, A.J. Zattera, J.A. Souza, S.C. Amico, Influence of calcium carbonate on RTM and RTM light processing and properties of molded composites, J. Reinfor. Plastic Compos., 30(14) (2011) 1213-1221.


[20] R. Chaudhary, M. Pick, O. Geiger, D. Schimidt, Compression RTM- A new process for manufacturing high volume continuous fiber reinforced composites, 5th International CFK- Valley State Convention, 07-08 June, STADEUM-Stade, Germany, (2011).

[21] Ansys, Fluent -Theory Manual, (2015).

[22] J. M.Lawrence, P.Frey, A. A.Obaid, S.Yarlagadda, S. G.Advani, Simulation and validation of resin flow during manufacturing of composite panels containing embedded impermeable inserts with the VARTM process, Polymer Composites. 28 (2007) 442-450.


[23] C.G. Davila, C. Smith, F. Lumban-tobing, Analysis of thick sandwich shells with embedded ceramic tiles, NASA Technical Memorandum 110278, U. S. Army Laboratory Technical Report 1213, Virginia, EUA, 1996. pp.1-16.

[24] S. Silva, C. Araújo, T. Andrade, A. Lima, V. Oliveira, Applying CFD in manufacturing of polymer composite reinforced with shape memory alloy via resin transfer molding process, Int. J. Multiphysics, 11(1) (2017) 71-82.


[25] P. Simacek, S. G. Advani, Resin flow modeling in compliant porous media: an efficient approach for liquid composite molding, Int. J. Mater. Form. 1 (2007) 1-13.


[26] C.A.A. Mota, C.J. de Araújo, A.G.B. Lima, T.H.F. Andrade, D.S. Lira, Applying isothermal injection moulding process in the manufacturing of polymer composite reinforced with NiTi shape memory alloy, Def. Diff. Forum. 10 (2017) 39-54.


[27] R. Matsuzaki, S. Kobayashi, A. Todoroki, Y. Mizutani, Flow control by progressive forecasting using numerical simulation during vacuum-assisted resin transfer molding, Compos.: Part A. 45 (2013) 79–87.


[28] M.C. Rezende, E.C. Botelho, The use of structural composites in the aerospace industry, Polym.: Sci. Technol., 10 (2)(2000) 1-7. (In Portuguese).

[29] S. Mouton, D. Teissandier, P. Sébastian, J.P. Nadeau, Manufacturing requirements in design: The RTM process in aeronautics, Compos.: Part A. 41 (2010) 125–130.


[30] C.H. Lee, C.W. Kim, S.U. Yang, B.M. Ku, A development of integral composite structure for the ramp of infantry fighting vehicle, 23° International Symposium on Ballistics. Tarragona, Spain, April 16-20, 2007, pp.1-6.

[31] U.K. Vaidya, C. Ulven, H. Ricks, Acoustic impact evaluation of ballistic damage in VARTM composites, Ninth International Congress on Acoustics and Vibration (IIAV), Orlando, July 08-11, 2002, pp.1-8.

[32] N. Jovera, B. Shafiq, U. Vaidyac, Ballistic impact analysis of balsa core sandwich composites, Compos. Part B: Eng., 67 (2014) 160-169.


[33] K. Otsuka, C.M. Wayman, Introduction, in: K. Otsuka, C.M. Wayman (Eds.) Shape Memory Materials, Cambridge University Press, Cambridge,UK, 1998, pp.1-24.

[34] F. Moukalled, L. Mangani, M. Darwish, The finite volume method in computational fluid dynamics an advanced introductionwith OpemFOAM® and Matlab®, First ed., Springer International, Switzerland, (2015).

[35] T.J. Barth, D.C. Jespersen, The design and application of upwind schemes on unstructured meshes, 27th Aerospace Sciences Meeting, Nevada, January 9-12, (1989).


[36] B.P. Leonard, S. Mokhtary, Ultra-sharp non oscillatory convection schemes for high-speed steady multidimensional flow, NASA Technical Memorandum 102568, ICOMP-90-12, (1990).

[37] W.K. Anderson, D.L. Bonhaus, An implicit upwind algorithm for computing turbulent flows on unstructured grids, Comput. Fluids. 23, (1) (1994) 1–21.


[38] S.V. Patankar, D.B. Spalding, Computer analysis of the three-dimensional flow and heat transfer in a steam generator, Forschung im Ingenieurwesen. 44 (2) (1978) 47–52.