Grain Boundary Design of Bulk Nanomaterials for Advanced Properties


Article Preview

Nanostructuring of metals and alloys by severe plastic deformation techniques is an effective way of enhancing their mechanical and functional properties. The features of the nanostructured materials produced by severe plastic deformation (SPD) are stipulated by forming of ultrafine-sized grains as well as by the state of grain boundaries. The concept of grain boundary (GB) design of ultrafine-grained metals and alloys is developed for enhancement of their properties by tailoring grain boundaries of different types (low-angle and high-angle ones, special and random, equilibrium and nonequilibrium) and formation of grain boundary segregations and precipitations by SPD processing. The paper presents experimental data demonstrating the super-strength and “positive” slope of the Hall-Petch relation when passing from micro-to nanostructured state in a number of metallic materials subjected to severe plastic deformation. The nature of the superior strength is associated with new strengthening mechanisms and the difficulty of generation of dislocations from grain boundaries with segregations. This new approach is used for achieving the enhanced strength in several commercial Al and Ti alloys as well as steels subjected to SPD processing.



Edited by:

Vladimir V. Popov and Elena N. Popova




R. Z. Valiev "Grain Boundary Design of Bulk Nanomaterials for Advanced Properties", Diffusion Foundations, Vol. 5, pp. 43-54, 2015

Online since:

July 2015





* - Corresponding Author

[1] H. Gleiter, Nanocrystalline materials, Prog. Mater. Sci. 33 (1989) 223-315.

[2] R.Z. Valiev, Nanostructuring of metals by severe plastic deformation for advanced properties, Nature Mater. 3 (2004) 511-516.

DOI: 10.1038/nmat1180

[3] R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, Z. Horita, M. J. Zehetbauer, Y. T. Zhu, Producing bulk ultrafine-grained materials by severe plastic deformation, JOM 58 (4) (2006) 33-39.

DOI: 10.1007/s11837-006-0213-7

[4] E.O. Hall, The deformation and ageing of mild steel: III discussion of results, Proc. Phys. Soc. Lond. 64B (1951) 747-753.

DOI: 10.1088/0370-1301/64/9/303

[5] N.J. Petch, The cleavage strength of polycrystals, J. Iron Steel Inst. 174 (1953) 25-28.

[6] C. Pande, K. Cooper, Nanomechanics of Hall–Petch relationship in nanocrystalline materials, Prog. Mater. Sci. 54 (2009) 689-706.

DOI: 10.1016/j.pmatsci.2009.03.008

[7] C. Koch, I. Ovid'ko, S. Seal, S. Veprek, Structural Nanocrystalline Materials: Fundamentals and Applications, Cambridge University Press, (2007).

[8] F. Louchet, J. Weiss, T. Richeton,  Hall-Petch law revisited in terms of collective dislocation dynamics, Phys. Rev. Lett 97 (2006) 075504 (1-4).

DOI: 10.1103/physrevlett.97.075504

[9] M. Kato, T. Fujii, S. Onaka, Dislocation bow-out model for yield stress of ultra-fine grained materials, Mater. Trans 49 (2008) 1278-1283.

DOI: 10.2320/matertrans.mra2008012

[10] R.Z. Valiev, Superior strength in ultrafine-grained materials produced by SPD processing, Mater. Trans. 55 (2014) 13-18.

DOI: 10.2320/matertrans.ma201325

[11] R.Z. Valiev, N.A. Enikeev, T.G. Langdon, Towards super-strength of nanostructured metals and alloys produced by SPD, Kovove Mater. 49 (2011) 1-9.

[12] R.Z. Valiev, I.V. Alexandrov, N.A. Enikeev, M. Yu. Murashkin, I.P. Semenova, Towards enhancement of properties of UFG metals and alloys by grain boundary engineering using SPD processing, Rev. Adv. Mater. Sci. (2010) 1-10.

[13] V.V. Popov, Mössbauer spectroscopy of interfaces in metals, Phys. Met. Metallogr. 113 (2012) 1257-1289.

[14] V.V. Popov, E.N. Popova, A.V. Stolbovskiy, V.P. Pilyugin, Thermal stability of nanocrystalline structure in niobium processed by high pressure torsion at cryogenic temperatures, Mater. Sci. Eng. A 528 (2011) 1491-1496.

DOI: 10.1016/j.msea.2010.10.052

[15] R.Z. Valiev, On grain boundary engineering of UFG metals and alloys for enhancing their properties, Mater. Sci. Forum, 584-586 (2008) 22-28.

DOI: 10.4028/

[16] P.V. Liddicoat, X.Z. Liao, Y. Zhao, Y. Zhu, M. Y. Murashkin, E.J. Lavernia, R.Z. Valiev, S.P. Ringer, Nanostructural hierarchy increases the strength of aluminium alloys, Nature Commun. 1 (2010) 63 (1-7).

DOI: 10.1038/ncomms1062

[17] R.Z. Valiev, T.G. Langdon, The art and science of tailoring materials by nanostructuring for advanced properties using SPD techniques, Adv. Eng. Mater 12 (2010) 677-691.

DOI: 10.1002/adem.201000019

[18] I. Semenova, G. Salimgareeva, G. Da Costa, W. Lefebvre, R.Z. Valiev, Enhanced strength and ductility of ultrafine-grained Ti processed by severe plastic deformation, Adv. Eng. Mater. 12(8) (2010) 803-807.

DOI: 10.1002/adem.201000059

[19] M.V. Karavaeva, S.K. Kiseleva, M.M. Abramova, A.V. Ganeev, E.O. Protasova, R.Z. Valiev, Microstructure and mechanical properties of medium-carbon steel subjected to severe plastic deformation, Nanoengineering 10 (2013) 30-36.

DOI: 10.1088/1757-899x/63/1/012056

[20] M.P. Liu, H.J. Roven, M. Yu. Murashkin, R.Z. Valiev, A. Kilmametov, Z. Zhang, Structure and mechanical properties of nanostructured Al–Mg alloys processed by severe plastic deformation, J. Mater. Sci. 48 (2013) 4681-4688.

DOI: 10.1007/s10853-012-7133-4

[21] R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci 51 (2006) 881-981.

DOI: 10.1016/j.pmatsci.2006.02.003

[22] H.P. Klug and L.E. Alexander: X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, New York , John Wiley & Sons, (1974).

[23] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci 45 (2000) 103-189.

DOI: 10.1016/s0079-6425(99)00007-9

[24] A.P. Zhilyaev, T.G. Langdon, Three-dimensional representations of hardness distributions after processing by high-pressure torsion, Prog. Mater. Sci 53 (2008) 893-979.

[25] Y. Zhao, J.F. Bingert, X. Liao, B. Cui, K. Han, A.V. Sergueeva, A.K. Mukherjee, R.Z. Valiev, T.G. Langdon, Y.T. Zhu, Simultaneously increasing the ductility and strength of ultrafine-grained pure copper, Adv. Mater. 18 (2006) 2949-2953.

DOI: 10.1002/adma.200601472

[26] Z. Horita, D.J. Smith, M. Furukawa M. Nemoto, R.Z. Valiev, T.G. Langdon, An investigation of grain boundaries in submicrometer-grained Al-Mg solid solution alloys using high-resolution electron microscopy, J. Mater. Res. 11 (1996) 1880-1890.

DOI: 10.1557/jmr.1996.0239

[27] R.Z. Valiev, A.A. Nazarov: In: Bulk Nanostructured Materials, ed. By M.J. Zehetbauer and Y. Zhu, (T. Weinheim, WILEY – VCH Verlag GmbH& Co. KGaA, Germany, 2009, p.21.

[28] R.Z. Valiev, E.V. Kozlov, Yu. F. Ivanov, J. Lian, A.A. Nazarov, B. Baudelet, Deformation behavior of ultra-fine-grained copper, Acta Metall. Mater. 42 (1994) 2467-2475.

DOI: 10.1016/0956-7151(94)90326-3

[29] G. Nurislamova, X. Sauvage, M. Murashkin, R. Islamgaliev, RZ. Valiev, Nanostructure and related mechanical properties of an Al-Mg-Si alloy processed by severe plastic deformation, Phil. Mag. Lett. 88 (2008) 459-466.

DOI: 10.1080/09500830802186938

[30] G. Sha, Y.B. Wang, X.Z. Liao, Z.C. Duan, S.P. Ringer, T.G. Langdon, Influence of equal-channel angular pressing on precipitation in an Al-Zn-Mg-Cu alloy, Acta Mater. 57 (2009) 3123-3132.

DOI: 10.1016/j.actamat.2009.03.017

[31] I. Sabirov, M. Yu. Murashkin, R.Z. Valiev, Nanostructured aluminium alloys produced by severe plastic deformation: new horizons in development, Mater. Sci. Eng. A 560 (2013) 1-24.

DOI: 10.1016/j.msea.2012.09.020

[32] N. Krasilnikov, W. Lojkowski, Z. Pakiela, R.Z. Valiev, Tensile strength and ductility of ultrafine-grained nickel processed by severe plastic deformation, Mater. Sci. Eng. A 37 (2005) 330-337.

DOI: 10.1016/j.msea.2005.03.001

[33] A.W. Thompson, Yielding in nickel as a function of grain or cell size, Acta Metall. 23 (1975) 1337-1342.

DOI: 10.1016/0001-6160(75)90142-x

[34] C. Xiao, R.A. Mirshams, S.H. Whang, W.M. Yin, Tensile behavior and fracture in nickel and carbon doped nanocrystalline nickel, Mater. Sci. Eng A301 (2001) 35-43.

DOI: 10.1016/s0921-5093(00)01392-7

[35] F. Ebrahimi, G.R. Bourne, M.S. Kelly, T.E. Matthews, Mechanical properties of nanocrystalline nickel produced by electrodeposition, Nanostr. Mater 11 (1999) 343-350.

DOI: 10.1016/s0965-9773(99)00050-1

[36] D.A. Hughes, N. Hansen, Microstructure and strength of nickel at large strains, Acta Mater. 48 (2000) 2985-3004.

DOI: 10.1016/s1359-6454(00)00082-3

[37] N. Tsuji: In: Nanostructured Materials by High-Pressure Severe Plastic Deformation, ed. by y. t. Zhu, V. Varyukhin, (Dordrecht, Springer Netherlands 2006) 227.

[38] M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, T.G. Langdon, Factors influencing the flow and hardness of materials with ultrafine grain sizes, Phil. Mag. A 78 (1998) 203-215.

DOI: 10.1080/01418619808244809

[39] Yu. Ivanisenko, A.V. Sergueeva, A. Minkow, R.Z. Valiev, H. -J. Fecht: In: Nanomaterials by Severe Plastic Deformation, ed. M. J. Zehetbauer and R.Z. Valiev (Wiley-VCH, Weinheim, Germany 2004) 453.

DOI: 10.1002/3527602461.ch8c

[40] M.V. Chukin, N.V. Koptseva, R.Z. Valiev, I.L. Yakovleva, J. Zrnik, T. Covarik, The diffraction submicroscopic analysis of the submicrocrystal and nanocrystal structure of constructional carbon steels after equal channel angle pressing and further deformation, Vestnik MGTU 1 (2008).

[41] M.M. Abramova, N.A. Enikeev, R.Z. Valiev, A. Etienne, B. Radiguet, Y. Ivanisenko, X. Sauvage, Grain boundary segregation induced strengthening of an ultrane grained austenitic stainless steel, Mater. Lett. 136 (2014) 349-352.

DOI: 10.1016/j.matlet.2014.07.188

[42] B. Kashyap, K. Tangri, On the Hall–Petch relationship and substructural evolution in type 316L stainless steel, Acta Mater. 43 (1995) 3971–3981.

DOI: 10.1016/0956-7151(95)00110-h

[43] I. Üçok, T. Ando, Property enhancement in type 316L stainless steel by spray forming, Mater. Sci. Eng. A 133 (1991) 284–287.

DOI: 10.1016/b978-0-444-89107-5.50072-1

[44] Z. Pakieła, H. Garbacz, A. Lewandowska, M. Suś-Ryszkowska, W . Zieliński, Structure and properties of nanomaterials produced by severe plastic deformation, Nukleonika 51 (2006) 19–25.

[45] H. Wang, I. Shuro, M. Umemoto, H.H. Kuo, Y. Todaka, Annealing behavior of nano- crystalline austenitic SUS316L produced by HPT, Mater. Sci. Eng. A 556 (2012) 906–910.

DOI: 10.1016/j.msea.2012.07.089

[46] S.A. Firstov, T.G. Rogul, S.N. Dub, V.T. Marushko, V.A. Sagaydak, Structure and microhardness of polycrystalline chromium produced by magnetron sputtering, Vopr. Materialoved. (The Issues of Materials Science) 1(33) (2003) 201-205.

[47] S.A. Firstov, T.G. Rogul, O.A. Shut, Transition from microstructures to nanostructures and ultimate harderning, Functional mater. 16 (2009) 364-373.

[48] X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita, R.Z. Valiev, Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena, Mater. Sci. Eng. 540 (2012) pp.1-12.

DOI: 10.1016/j.msea.2012.01.080

Fetching data from Crossref.
This may take some time to load.