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Abstract. Energy consumption in conventional domestic housing in Oman is quite high due to 
cost-intensive mechanical air conditioning systems. For the climate conditions in Oman, it is 
expected that energy conservation using a smart passive cool roof will be valuable and significant. 
This paper presents the thermal assessment and energy efficiency of a novel forced convective 
evaporative cooling system with a radiation reflector. The results revealed that the proposed smart 
passive cool system can reduce the indoor air temperature of the building models, with the highest 
reduction in the room and roof surface temperature of 13.07oC (36.7%) and 66.42°C (75.7%), 
respectively. This is due to its ability to inhibit solar radiation and dissipate heat by evaporation, 
forced convection due to the dynamic behaviour of air in the air ventilation between primary and 
secondary roofs, and nocturnal radiation. The research has conclusively demonstrated that the smart 
passive cool system may significantly lower the energy consumption of residential and commercial 
buildings.  

Introduction 
Residential buildings are the largest energy consumers in the Sultanate of Oman, accounting for 
69.1% of total consumption in the 2018 annual electricity report [1]. The increase in energy 
consumption in residential buildings is principally attributable to the heavy use of air conditioning 
systems due to high solar radiation throughout the year. The depletion of oil supplies and falling fuel 
prices, resulting in an increase in electrical energy costs, necessitates a concentrated effort to reduce 
energy use. In such cases, green energy or passive cooling systems can significantly decrease heat 
leakage into buildings and lower energy consumption. 

Many investigations have been undertaken to explore the effectiveness of a passive cool roof 
since Fracastoro et al. [2] investigated the possibility of minimizing heat gain in dwellings by 
employing under-roof cavities in 1997. In 2002, the French Scientific and Technical Centre for 
Building Research [3] took measurements on a number of experimental passive cool roofs. 
Evaporative cooling utilizes the effect of evaporation as the natural heat dissipater. Sensible heat 
inleak from surroundings has been utilized as latent heat needed to dry out the water. Nagano [4] 
compared the efficiency of evaporative cooling with a conventional mortar concrete roof and 
observed that evaporative cooling can reduce the top surface heat by 8.63°C. Erens [5] & San Jose 
Alonso et al.[6] observed that direct evaporative cooling produces low air conditioning expenses. 

Khedari et al. [7] investigated free convection in a roof thermal panel experimentally. In 2007, 
Chang et al. [8] performed an experimental evaluation of the energy savings gained by adding a 
thermal insulation barrier in a double-skin roof. Based on a research of the thermo-fluid dynamic 
behaviour of the air within the ventilated roof and heat fluxes through ventilated roofs, Gagliano et al. 
[9] reported in 2012 that roof ventilation can significantly reduce heat fluxes (up to 50%) during the 
summer season. In 2001, Hirunlabh et al. [10] studied several performance characteristics as a 
function of solar radiation for various roof pitch degrees. Villi et al. [11] establish correlations to 
characterize airflow and heat transport events in the ventilation cavity. Ciampi et al. [12], and 
Medved [13] discovered that a ventilated roof maintains the inner shell temperature closer to ambient, 
minimizing the impact of solar radiation on the building. The reduction of heat in a leak into an attic 
through metal deck roofing in industrial buildings was studied by Ming ChianYew et.al [14]. The 
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study reveals the effect of cavity ventilation, solar powered fans and thermal reflective coating on the 
thermal performance of buildings. A maximum reduction of 15oC attic air temperature was obtained 
compared to a normal roof. The improved performance is because of integration of reflective coating, 
moving air cavity (MAC) with solar powered fans and reflection of sunlight and circulate the hot air 
efficiently. Jorge L. Alvarado [15], USA, used commercially available materials such as aluminium 
1100 and galvanized steel as radiation reflectors; and polyurethane, polystyrene, polyethylene, and an 
air gap were used as insulation. Experimental results showed that the radiation reflector shape as well 
as the material selection of each passive cooling system led to reductions in heat conduction between 
65 and 88%. Anna Laura Pisello [16], 2014, Italy, have used traditional roof brick tiles for passive 
cooling. Results showed that during summer the high reflection tiles are that able to decrease the 
average external roof surface temperature by more than 10°C and the indoor operative temperature by 
more than 3 °C.  Several studies have been conducted in various regions in order to produce novel and 
energy efficient passive cool roofing [17-21]. 

High ambient temperature in arid regions raises the indoor and exterior temperature levels of 
residential and commercial structures, accelerating the use of energy-intensive and costly mechanical 
air-conditioning systems. The novelty of the present study is to assess and compare the thermal 
performance of a smart passive cool system (forced convective evaporative cooling with radiation 
reflector) with a conventional system. It also quantifies those advantages in terms of heat flow 
changes in the field. 

Materials and Methods 
Two symmetrical scaled laboratory test models were used to study the thermal performance of 

smart passive cool roof. One of them is a reference roof with aluminium sheet of thickness 2 mm that 
has no additional roof materials on top of it. It is used to compare the room air and roof slab 
temperatures. The second model is a smart passive cool system that has a roof with aluminum 
radiation reflector and evaporator cooling system separated by an air gap of 10 cm between them. 
Evaporator cooling system has cooling fans connected in series with a diaphragm pump for water 
circulation. 

 
Fig.1 Schematic of the Experimental Set up 

Heat Transfer Mechanisms. There are three types of heat transfer mechanisms taking place in a 
smart passive cool roof system as shown in Fig.1. First stage cooling is reflection of solar radiation by 
the external surface of aluminium reflector. In the second stage of heat transfer process, evaporative 
cooling with forced convection due to the dynamic flow of air in the ventilation take place. The final 
stage of heat in leak is conduction through the top surface of the roofing layer. The heat in leak into 
the smart passive cool room is effectively reduced by a combination of radiation reflector, dynamic 
air ventilation and evaporative cooling technique as shown in experimental set-up. 
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Conventional Reference system. The walls of the reference laboratory model (50 cm x 50 cm x 50 
cm) was fabricated by acrylic resin thermal insulator to avoid any lateral heat conduction through the 
walls and to ensure that the heat transfer will take place only through the roofs as shown in Fig.2. 
Aluminium sheet with a thickness of 2 mm was fixed at the top of the model as roof. Thermocouples 
are fixed at various points to measure room air and roof surface temperatures. 
 

 
(a) Model 

 

 
(b) Manufactured system 

Fig.2 Reference roof System  
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(a) Model 

 
(b) Fabricated system 

Fig.3 Smart Passive cool Roof 
Smart Passive Cool Roof System (Forced Convective Evaporative Cooling-Radiation Reflector 
Passive Cool System). In a smart passive cool system, two aluminium metal sheets with an air gap of 
10 cm between them were used to enhance the convective cooling process as shown in Fig.3. 
Specially made channels were used to fix the metal plates with the required air ventilation. The 
experimental model consists of water ejectors fixed between the metallic roofs to spray water to 
obtain evaporative cooling. Water jets sprayed through the nozzle will absorb sensible heat load from 
the roof and utilize it as latent heat to get evaporated. The majority of heat from the roof will be taken 
away by evaporative cooling. A series of cooling fans (five) are fixed in the air ventilation (10 cm) to 
improve the heat transfer rate by forced convection.  Presence of dynamic air in the ventilation 
reduces heat in leak. In addition, radiation reflector fixed on top of the system improves the cooling 
rate by radiation reflection. Thermocouples are fixed at various points to measure room air and roof 
surface temperatures.  
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Materials. The various layers of the passive cool model are shown in   Table 1. 
 

Table 1 Material Specifications 
Material Thickness 

(cm) 
Thermal conductivity (W/ mok) 

Acrylic Resin 0.5 0.19 
Aluminium radiation reflector 0.2 221 

Air ventilation 10 26 

Instruments. Table.2 shows the specifications of the temperature data recorder and Type T 
thermocouples installed (Fig.4) to measure the indoor air and the roof surface temperatures. The data 
were recorded every 5 minutes for 120 minutes in both the reference and passive cool system models. 

Table 2. Data logger and Thermocouple specifications 

Type Type T, exposed type, 
PTFE insulated  

Model TC-08 

Sensitivity 40 µV/°C, 1oC over the 
range -200oC to 400oC 

 Channels Eight 

Tip diameter 1.5 mm Range of 
measurement 

–270 to +1820 °C 

Tip temperature –75°C to +350 °C Resolution 0.025oC 
 

 
(a) Data logger 

 
(b) Type T thermocouple 

Fig.4 Instruments for measuring the temperature 
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Results and Discussions 
Type T thermocouples fixed in the middle of the symmetrical test models were used to measure 

room air temperature. The sensors fixed on the interior roof surface were used to measure roof surface 
temperature. These sensors are connected to the temperature data logger and temperatures were 
recorded with a computer assisted system continuously for 120 minutes. The two halogen lamps of 
1500 W were used to heat the reference and passive cool roofs artificially in the laboratory. 
Thermal Performance of Conventional Reference System. The room air and interior roof surface 
temperature profile of reference system is shown in Fig.5. The room air temperature increased 
gradually from 21oC to 30oC in first 27 minutes and then increased slightly from 30 to 120 minutes. 
The interior surface temperature increased sharply in first 9 minutes from 22oC to 78oC and then 
gradually increased from 9 to 30 minutes.  The indoor temperature recorded after 45, 90 and 120 
minutes were 32.9oC, 35.11oC and 35.29oC respectively.  

 
Fig.5 Temperature profile of reference roof 

Thermal Performance of smart passive cool roof system. The passive cool room has significantly 
lower temperature peaks as shown in Fig.6. The roof surface temperature increased gradually from 
22.18oC to 42.57oC in the first 21 minutes and raised slightly from 21 to 120 minutes. There was only 
a minor increase in room air temperature. The indoor air and roof surface temperature obtained after 
120 minutes of operation were 22.38ºC and 41.82ºC respectively. 
Comparison of Reference and Smart Passive Cool Roof Systems - Room Air Temperature. 
Compared to a reference room, the smart passive cool room has significantly lower temperature peaks 
as shown in Fig.7. The room air temperature of reference system increased steadily from 21.37oC to 
32.9oC in the first 45 minutes and then increased slowly about 0.1 to 0.8 oC in every 5 minutes until 
120 minutes. Whereas room air temperature of the smart passive cool roof increased very slowly and 
marginally from 21.58 oC to 22.81oC in the first 45 minutes and afterwards remained almost constant 
from 45 to 120 minutes. It indicates that the passive cool room's indoor temperature was significantly 
lower than that of a standard reference roof. The maximum reduction in room air temperature of 
smart passive cool roof system in comparison to a conventional reference roof was observed to be 
13.01oC (36.7%) as shown in Fig.8. The difference in temperature is due to to the improved 
evaporative cooling, exploiting dynamic nature of air ventilation and radiation reflector. The roofing 
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system stops the incoming heat flux using the dynamic air in the ventilated channel which is cooled 
by means of water evaporation (latent heat) and also due to the radiation reflection by aluminium 
reflector at the top layer. 

 
Fig.6 Temperature profile of smart passive cool roof 

 

 
 

Fig.7 Room air temperature profile of reference and passive cool roofs 
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Fig.8 Room air temperature reduction between reference and smart passive cool roof 

 

 
 

Fig.9 Interior Roof Surface temperature profile of reference and smart passive cool roof 
Comparison of Reference and Smart Passive Cool Roof Systems Interior Roof Surface 
Temperature. When compared to a typical reference room, the passive cool room has significantly 
lower roof surface temperature peaks as shown in Fig.9. The roof surface temperature of reference 
roof increased significantly from 22°C to 85°C in the first 21 minutes. Regardless, the aluminium 
reflector - evaporator passive cool system stayed stable all the time with a marginal fluctuation in 
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temperature and the data after 60 and 120 minutes were 21.64oC and 21.2oC respectively.  The 
maximum reduction of 66.59oC (75.7%) has been observed in interior roof temperature of smart 
passive cool roof in comparison with a normal reference roof as shown in Fig.10. 

 

 
Fig.10 Interior roof surface temperature reduction between reference and smart passive cool roof  

Conclusions 
The present study focuses on the thermal assessment of a smart, innovative passive cooling 

system and its impact on cooling potential. It has been established that the smart passive cooling 
system showed much lower temperature peaks than the normal reference roof. The resulting 
maximum reduction in room air and interior roof surface temperature after 120 minutes of operation 
were 13.07oC (36.7%) and 66.42°C (75.7%), respectively. The efficiency of a smart passive cool roof 
(evaporative cooling system with forced convection and radiation reflector) has been demonstrated 
convincingly through the laboratory test models. It can be used as an energy-saving technique and 
provide comfort conditions in Oman villas to reduce the indoor temperature of the buildings and save 
energy in terms of air conditioning.  

Acknowledgements 
This is to acknowledge that this paper is a part of the research project entitled “Experimental 
Investigation of Cooling Performance of Psychrometric Passive Cooling in hot arid regions”, funded 
by the Research Council, Oman, under the Faculty-mentored Undergraduate Research Grant Award 
Program. 
 
 
 
 

Engineering Innovations Vol. 1 61



 

References 
[1]  Authority for Electricity Regulations, Oman, Annual Report 2018. 
https://www.aer.om/downloadsdocs/annual-reports/AnnualReportEnglish2018.pdf 
[2]  Fracastoro G. V., Glai L., Perino M. (1997) Reducing cooling loads with under roof air 
cavities, in: Proceedings of AIVC 18th Conference, Ventilation and Cooling, Athens, Greece. p. 
477-486. 
[3] CSTB, (2002). Determination of the Thermal Performances of a Roof Ventilation System 
Grenoble, France, E-01-0005.  
[4] Wanphen S and Nagano K 2009 Experimental study of the performance of porous materials to 
moderate the roof surface temperature by its evaporative cooling effect Build Environ 44, 338−51 
[5] Erens P J and Dreyer A (1993) Modeling of indirect evaporative coolers Int J Heat Mass Tran, 36 
17−26 
[6] San Jose Alonso J et. al. (1998) Simulation model of an indirect evaporative cooler Energy 
Buildings, 29 23–27 
[7] Khedari J., Yimsamerjit P., Hirunlabh J. (2002) Experimental investigation of free convection in 
roof solar collector. Building and Environment.. 37: 455 − 459.  
[8] Chang P-C, Chiang C-M, Lai C-M,( 2008.) Development and preliminary evaluation of double 
roof prototypes incorporating RBS (radiant barrier system), Energy & Buildings. 40:140–147.  
[9] Gagliano A., Patania F., Nocera F., Ferlito A. Galesi A., (2012)Thermal performance of 
ventilated roofs during summer period, Energy and Buildings.. 49:611–618.  
[10] Hirunlabh J., Wachirapuwadon S., Pratinthong N., Khedari J. (2001) New configurations of a 
roof solar collector maximizing natural ventilation. Building and Environment.36: 383 - 391.  
[11] Villi G., Pasut W., De Carli M. (2009), CFD modelling and thermal performance analysis of a 
wooden ventilated roof structure. Building Simulation 2. 215–228.  
[12] Ciampi M., Leccese F., Tuono G. (2005) Energy analysis of ventilated and microventilated roofs. 
Solar Energy.. 79: 183 − 192.  
[13] Dimoudi A., Androutsopoulos A., 2006, Lykoudis S. Summer performance of a ventilated roof 
component. Energy and Buildings., 38: 610 − 617. 
[14] M. C. Yew, M. K.Yew, L. H. Saw ,T. ChingNg , K. P. Chen, D.R. kumar, J. HanBeh. (2018). 
Experimental analysis on the active and passive cool roof systems for industrial buildings in 
Malaysia. Journal of Building Engineering, 19, 134-141.    
[15] Jorge L. Alvarado, Wilson Terrell, Jr., Michael D. Johnson, (2009), Passive cooling systems for 
cement-based roofs, Building and Environment 44, 1869–1875.    
[16] Anna Laura Pisello , Federico Rossi and Franco Cotana, (2014) Summer and Winter Effect of 
Innovative Cool Roof Tiles on the Dynamic Thermal Behavior of Buildings, Energies, 7, 2343-2361; 
doi:10.3390/en7042343.                  
[17] V. Kumar. (2020). Investigation of the thermal performance of coconut fibre composite with 
aluminium reflector cooling roofs, Environment, Development and Sustainability, 22:2207-2221, 
DOI 10.1007/s10668-018-0285-x 
[18] Alvarado, J. L., Terrell, W., Jr., & Johnson, M. D. (2009). Passive cooling systems for 
cement-based roofs, Building and Environment, 44, 1869–1875 
[19] Mintorogo, D. S., Widigdo, W. K., & Juniwati, A. (2015). Application of coconut fibres as outer 
ecoinsulation to control solar heat radiation on horizontal concrete slab rooftop. Procedia 
Engineering, 125, 765–772 
[20] Solorzano, Lopez, Obaidi, (2020) Environmental design solutions for existing concrete flat roofs 
in low-cost housing to improve passive cooling in western Mexico, Journal of cleaner production, 
Vol.277, 123992 https://doi.org/10.1016/j.jclepro.2020.123992 
[21] X. Lu, P. Xu, Huilong, W.Tao, Y.J.Hou. (2016). cooling potential and applications prospects of 
passive radiative cooling in buildings: The current state-of-the-art. Renewable and Sustainable 
Energy Reviews, 65, 1079-1097 

62 Engineering Innovations Vol. 1


