Saving Environment in Architecture Design through Illusion Method: A Literature Review

FERIAN Yavis Pradika^{1, a}, FX TEDDY Badai Samodra^{1,b*} and SARAH Cahyadini^{1,c}

¹Department of Architecture, Institut Teknologi Sepuluh Nopember, Kampus ITS, Sukolilo, Surabaya, Indonesia, 60111

^aferianyavis@gmail.com, ^bfxteddybs@arch.its.ac.id, ^cs.cahyadini@arch.its.ac.id

Keywords: Architecture Design, Environment Impact, Green Architecture, Real and Virtual, Urban Environment

Abstract. Architecture deals with solving problems through building design, including environmental issues. This study focuses on and analyses the architectural illusion design to save the environment. Therefore, applying this illusion approach manipulates the area of the environment, which directly affects the user's living. The purpose of architectural illusion in the design is to impact the environment significantly. This study method reviews the relevant literature that provides solution strategies for a design without using illusions. These solutions are then compared using illusions to determine the differences in environmental saving. The result is that designs that apply architectural illusions will benefit the environment and not threaten the environment.

Introduction

Architectural design is a relationship between 3 balances: strength, beauty, and utility [1]. Issues in architecture are constantly changing from time to time. Nowadays, the environment is considered essential to architecture [2]. Meanwhile, the environment is needed to construct an architectural design as a medium and forming element. Therefore, an architectural design must now be able to protect the environment significantly [3].

In the field of architectural design, the environment is a crucial imperative. This constraint demonstrates that the approach to resolving this problem is still evolving [4]. One role in resolving these issues is the employment of technology, which is entirely efficient. Technology use has drawbacks, one of which is that it consumes energy to function. However, there must be a technologically free method of addressing the urgency of the environment in architectural design. It is designed to accomplish the main goals as effectively as possible [5]. Some scholars suggest using passive design in architecture to address the issue and safeguard the environment. Although this method does not involve technology, not all design fields can use it. There are unfavorable environments for many architectural ideas [6].

By contrasting architectural designs that use illusions and those that do not, this study aims to show how illusions are used in a design. This invention gives architectural designs a high level of effectiveness in preserving the environment, especially those in limited environments. Illusion in an architectural design can prevent environmental problems without using technology. All that needs to be done is to arrange the elements [7]. The bibliometric analysis of Vosviewer reveals that the subject matter of this paper has not frequently been studied (Fig. 1).

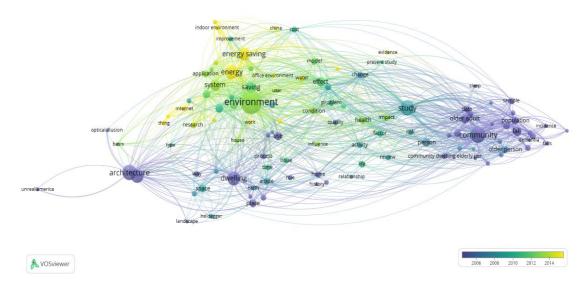


Fig.1. Vosviewer as bibliometric mapping

This structured narrative review aims to explore the frameworks used to investigate the method of illusions to save the environment on design, the methods employed, and whether the experiments found evidence in support of the framework. The combination of illusion and architecture can find new ideas supporting saving the environment.

Methods

By literature review, this method compares sources before comparing dwelling-related environmental protection solutions that employ deceptions and those that do not. A literature search was conducted using Mendeley and the search engine Google Scholar to find research that reports both manipulations of the visual environment with illusions (Fig. 2). Included in the list of keywords and phrases are environmental architecture, ecology architecture, illusion architecture, dwelling, or dwelling environment. No limitations on publication date, study design, or methodology were applied during the search carried out in May 2023.

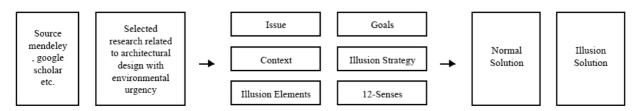


Fig.2. Research method diagram

This scientific article's title is based on data analysis by Vosviewer, which identifies scientific works that have not undergone extensive research. The Vosviewer is applied as a bibliometric mapping with the keywords illusion architecture and saving environment. Nothing on this level dazzles research authors, organizations, or articles. Studies based on diverse scientific papers are required for inclusion, as are studies integrating research on illusion, environment, dwelling, and other related scientific articles. The illusion method examines related articles by studying associated issues, contexts, approaches, goals, and standard solutions.

Results and Discussions

Environment Urgency. The national goal is to reduce carbon emissions from buildings because they are significant in carbon reduction plans. Future concerns include the need to lessen the influence on

the environment [8]. Due to industrialization and economic expansion, urbanization significantly affects how a local area's land use and land cover (LULC) are changed. Replacing natural surfaces, including bare soil, with impervious surfaces that lessen water percolation into the ground is one of the primary changes urbanization brings. Urban areas' surface cooling rates drop due to these changes [9], resulting in decreased soil moisture and evapotranspiration. The environment is now significantly impacted by development and is eventually supplanted by it [10]. One of the impacts of not maintaining the environment is human food sources. To solve the issues of food security, science-based decision-making is essential. The public and private sector scientific community must work together to maximize a globally collaborative research environment. Policymakers and regulatory authorities must move quickly to provide a level playing field so that all researchers, farmers, and food chain participants can access the newest technologies [11]. Humans should preserve the environment so that it has a positive effect on humans. A diagram of land use in architectural design can be seen in Fig. 3.

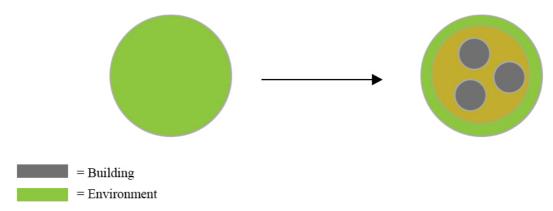


Fig. 3. Comparison between building and environment

Development causes a reduction in land, which damages the environmental ecosystem. Buildings do not necessarily require large land areas, but now, much land is not being used effectively. As a result, the cooling rate of urban surfaces is significantly lower than rural ones. Large amounts of waste heat and pollutants are also released into the atmosphere due to the expansion of trade, industry, and transportation operations in urban areas [12]. All of these adjustments to energy budgets result in higher temperatures in urban regions than in nearby rural areas, known as the urban heat island effect (UHI). Due to the discharge of heat from all concrete surfaces, including buildings and roadways, this phenomenon is most apparent at night [10].

Green Architecture Principles. Protecting the environment is everyone's responsibility. A good environment will also respond well to humans. National targets focus on reducing carbon emissions in residential areas and have an essential role in carbon reduction strategies. Reducing environmental impacts is a future architecture design issue [8]. According to [13], six principles make the presence of this design suitable for the surrounding environment (Fig. 4).

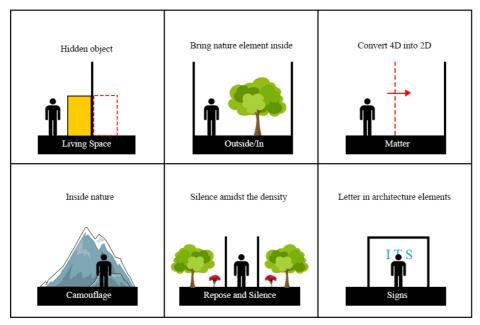


Fig. 4. Six Green architecture principles

Source: Green Architecture: Design for an Energy-conscious Future [13]

The six principles of environmentally friendly buildings above are a form of architectural design's concern for the environment. Architecture requires an environment to be present and provide benefits to a design. Green architectural principles in a design have become something that must be fulfilled apart from other design principles. Procedures implementing green architecture are advantageous because they will receive certification from institutions overseeing architectural design development. This certification will make the design easy to approve and difficult to debate.

Illusion Strategy in Architecture. The architecture of illusion is a relationship between real and virtual elements [14]. Virtual reality is presented in a real form and the real world. Illusions mainly depend on the user, their point of view, and how they perceive things. In architecture, illusion is a strategy for achieving particular objectives without the aid of technology. The illusion posture significantly impacts the material. If a material is arranged in a specific pattern, it takes on a new significance and is not just regarded as a form [15]. Illusion in architecture is very close to reality [16]. We can create an illusion with a specific purpose using our desired elements and strategy. We are arranging real aspects to form an illusion. The more an illusion deceives the user, the more influential the illusion is in a design. The illusion exists in the glorious moment of hesitation when we examine our realities and reevaluate our expectations, frequently leading to discovering a new adventure and an ideal equilibrium. Something seems to settle as if it suddenly feels like the appropriate course of action [7]. The illusion strategy in the above table demonstrates six techniques for applying illusions to various aspects. This strategy will be contrasted with other environmental protection strategies. Solutions from different literature will be used to compare the effectiveness of using illusion in architecture for environmental protection (Fig. 5).

Fig. 5. Camouflage, living space, matter, outside/in, repose and silence, signs as illusion strategy in architecture. Source: Illusion in Design: New Trends in Architecture and Interiors [7]

The six illusion strategies above can be used in the context of protecting the environment. An illusion applied to an architectural design can directly affect the user. The relationship between the environment and users can be modified so that users can use land efficiently. The following is an explanation of the six illusion strategies:

1. Camouflage

When it comes to camouflage, the projects chosen don't just aim to blend in with their surroundings or fool the sight for the sake of deception but also more significant objectives of user engagement. Architecture will be concealed using this camouflage technique as an object in the surroundings to meet a purpose.

2. Living Space

At its root, the illusion is an invitation. Suppose we can comprehend it, which takes thought, knowledge, and curiosity and opens doors to the unexpected. In architecture, concealing is always done with a view toward efficiency while also serving a practical purpose. This strategy for creating living space makes efficient use of available areas. Residents can use a space that can serve multiple purposes and has interiors that can change or be hidden.

3. Matter

It is no longer unusual for furniture to sell at auction for the same price as or more than a work of art by a well-known artist. Furniture may shape itself around the experiences and expectations of every consumer and is just as interpretative as any area used by the body. An expression of the furniture industry's evolution. The idea is to use this way to make something impossible in furniture to be present. The matter process will provide a fantastical element to furniture design.

4. Outside/In

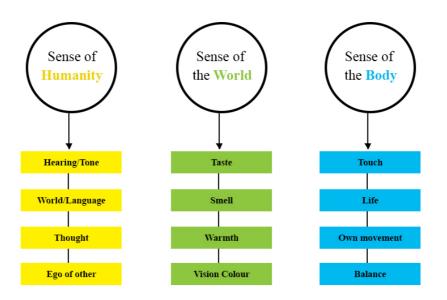
In this part, illusion investigates unconventional approaches to combining site elements with interior architectural design. Shelter, security, and property management serve their fundamental purposes, but only with some interruption or even unrest brought on by conflicts over primacy. This approach focuses on entering something externally and is perceptible from within the structure. Residents might feel a sense of oneness with the surrounding environment by choosing transparent materials.

5. Repose and Silence

The favored acoustic for relaxation is quiet, and strangely, the acoustics of silence are rather complex. It is not possible outside. Outside, one cannot be alone. There are thus two different types of seekers: one yearns for firmness and silence, and the other yearns for movement and passing screams of the natural world. This approach is mainly concerned with silence. This approach aims to create a design that can accommodate this requirement.

6. Signs

There is just one way to view this illusion. Several architectural components typically used to display writing, graphics, etc., present illusions. This deception aims to insert another dimension into our own instantaneously. The strategy can be a marking on an outside architectural design, which is highly helpful in marketing.


As an example of its application, the following two buildings demonstrate the use of the illusion method in architectural design: *Singha D'luck Theatre – Thailand*, the Illusion material is used in this design. To make it happen in reality, illusion support theory is used. When viewed from a particular angle, the structure seems transparent due to the addition of mirrors to its walls. *Tree Hotel – Sweden*, this concept is for a house in a forest. This design location is supported by a tree that is 8 meters high. This building's glass walls use virtual materials to give the impression of transparency and environmental friendliness without using additional colors. Illusions addressed to the user must

certainly look as real as possible. In implementing an illusion, the elements that form it are needed [17]. This can be seen in Table 1.

Table 1. Illusion elements in architecture
Source: Art and Visual Perception: A Psychology of the Creative Eye [17]

No.	Illusion Elements
1	Balance
2	Shape
3	Form
4	Growth
5	Space
6	Light
7	Color
8	Movement
9	Dynamics
10	Expression

This illusory element is an application object, and the elements can form a design. This strategy makes the details a sub-section in implementing the illusion, which aims to save the environment. The illusion that is felt is undoubtedly different for everyone, but the designer only has one intention and purpose in presenting this illusion. Until now, it cannot be judged by the 12 sensors. This happens because the application of illusion has not been able to replace complex real elements. In this design, the illusion presented can be felt by 12 human sensors (Fig. 6.).

Fig. 6. 12-Sensory Source: Steiner and Goethe: Circle of Senses [18]

Sensory is divided into 3: sense of humanity, sense of the world, and sense of the body. This 12-sense is a more detailed division than the 5-sense we generally know. For example, one organ in the body can feel several different senses, including the skin, which can feel temperature and touch with different feelings. These three senses represent human nature in the scope of social interaction, namely when alone (sense of the body), family (sense of the world) and the public (sense of humanity). 12-sensory will be the main target in applying illusion architecture to a design. An illusion that all 12 senses cannot currently perceive. Therefore, this research uses a combination of illusion theory so all 12 senses can feel the illusion. A module is proposed to provide direction and convenience when applied to a design to convey the illusion in an architectural design. How an illusion architecture is formed can be seen in Fig. 7.

land use

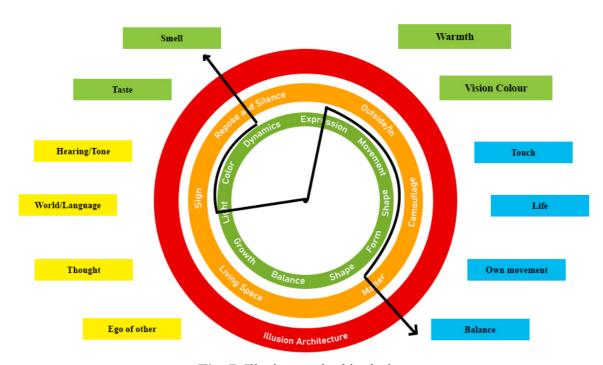


Fig. 7. Illusion method in design

The illusion module is proposed to facilitate the application of architectural illusions in a design. Starting from determining the illusion element (in the middle of the diagram), this purpose is based on user and land analysis. Then, select the illusion strategy that suits the specified elements and determine what sensory you want to focus on presenting. Sense is presented as a whole, but determining sense is used as a reference to its presence in general. Each zoning can be carried out at the same stages. Different zoning and architectural illusion approaches can be based on the architectural design module.

The Effect and Strategy to Save Environment with Illusion. Architecture design significantly impacts the environment in terms of issues, context, challenges and aims, strategy, and theory. The following explanations of the connection between housing and the environment are taken from several sources and can be seen in Table 2.

Source	Issue	Context	Goals	Normal Solution	Illusion Elements	Illusion Strategy	12-Senses	Illusion Solution
[19] (Andersen, 2009)	Natural energy in dwelling	Bringing air into the building	Dwelling requires air exchange	Create space for air circulation	Space	(Outside/In)	Touch	Bringing air inside with air movement illusion
[20] (Ishikawa, 2012)	Urban green in dwelling environment	Effect green space	Green spaces improve the working environment	Built Indoor garden	Balance	(Matter)	Smell Life	Illusion visual for indoor space
[21] (Kalibatas, 2011)	Dwelling attributes to users	Indoor attributes of dwelling	Defining attributes of dwelling	Element to get positive attributes	Dynamics	(Outside/In)	Warmth	Using illusion to guide the attributes inside
[22] (Gamaldo, 2015)	Dwelling environment effect	Sleep duration in dwelling	Dwelling for a rest place	Isolation dwelling	Light	(Repose and Silence)	Ego of other	Illusion to give 12-sense of a suitable dwelling
[23] (Ishikawa, 2015)	Environment dwelling for live relocation	Being close to the place of daily activities	Dwelling criteria are good to move into	Build suitable dwelling	Shape	(Repose and Silence)	Life Own movement	Illusion of distance for activity place
[24] (Bian, 2022)	Strategy and the Rural Revitalization Strategy	Exploration of the design rules of traditional	Comfortable residential environment	Optimized design of indoor thermal environment	Movement	(Outside/In)	Warmth	Bringing in the outside elements by not adding

residential

Table 2. Summary of the effect of dwelling on the environment

Source	Issue	Context	Goals	Normal Solution	Illusion Elements	Illusion Strategy	12-Senses	Illusion Solution
[25] (Hidayat, 2017)	Densely populated settlements	Lower- middle-class urban community	Use a natural building system	Using natural elements as the primary energy source	Expression	(Outside/In)	World/language	Using mirror reflection to include natural light
[26] (Mao, 2023)	Regional Local Architecture	The impact of traditional culture	Use environmental factors on survival	Provide the best location for dwelling for survival purposes	Shape	(Camouflage)	Vision colour	Located in an area that does not have an environmental ecosystem
[27] (Palazzo, 2022)	Flood in urban areas	Allocating space to fluctuating water levels	Constructed ecology principle in design	Landscape architecture to avoid flood levels	Movement	(Repose and Silence)	Own movement	Controlling flood level by design
[28] (Rahayu, 2017)	Energy efficiency coffee design	Coffee agrotourism design	Attract the attention of visitors	Cut and fill the area	Dynamics	(Repose and Silence)	Thought	Designing in contoured areas
[29] (Salgin, 2017)	Implementing sustainability to architectural developments in technology	Vernacular architecture	Contribute to improving sustainability in construction	Design following the vernacular architecture	Form	(Outside/In)	Vision colour	A design that has no boundaries between outside and inside
[30] (Zahrah, 2018)	Conservation of river	Rehabilitate the area from physical	Optimum land use	Utilizing area gardening on floodplain a river as a communal area	Growth	(Repose and Silence)	Warmth Smell	Designing rest areas in communal areas
[31] (Rahman, 2017)	Place of Recreational Education on science and technology with environment	Preserving the environment	New tourist destinations with an educational theme	Focus on environmental adaptation, conservation of ecological element	Shape	(Camouflage)	World/language	The mass of the building blends in with the surroundings
[32] (Surya, 2016)	Environment restore	Ecological urbanism on heritage site	Integrating nature with architecture	Use nature and ecology element	Balance	(Repose and Silence)	Balance Life	Designing a resting place in a crowd
[33] (Jasper, 2020)	Influential agents over urban space	Music and place	The sound produced is friendly to the environment	Combine between sound, modernity, and urban space	Expression	(Matter)	Hearing/tone	Creating artificial sounds
[34] (Kanuch, 2022)	Saving energy in the apartment building	Conservation energy	Gain energy from sun heat	Photovoltaics panel	Light	(Outside/In)	Warmth	Using a mirror to reflect sunlight
[35] (Shagiakhmetova, 2021)	Reduce the negative impact on the environment	Energy efficient system	Get energy with rainwater harvesting and solar electric plant	Built rainwater and solar panel system	Balance	(Camouflage)	Own Movement	Hide utility system with architecture elements
[36] (Sabrina, 2018)	Community environment and quality of life	Thermal comfort with rainwater	Rainwater to cool down the building's thermal	Built rainwater path to spread the whole building	Shape	(Repose and Silence)	Warmth	Making a silent rainwater system to convert into energy used in the building.
[37] (Nielsen, 2020)	Medical health on office building	Open plan vs. cellular offices on mental health	To get a better organized office	Create an open plan and organize the office interior	Expression	(Matter)	Vision colour	Creating a virtual environment to reduce stress level
[38] (Lindsay, 2003)	Malaria mosquitoes affect human health	Improve health qualities	Reduce malaria mosquitoes in house design	Screen ceiling material to catch malaria mosquitoes	Movement	(Matter)	Vision colour Smell	Creating lavender vision and smell to reduce malaria mosquitoes

Source	Issue	Context	Goals	Normal Solution	Illusion Elements	Illusion Strategy	12-Senses	Illusion Solution
[39] (Dan, 2016)	Energy efficiency in building	Use climate to reach efficiency in building	To reduce the energy cost of building	Built passive house design to get natural energy	Dynamics	(Outside/In)	Life	Making all materials on the building to gain natural energy
[40] (Sani, 2012)	Non- architectural factors on house design	Another component of house design	Collaboration with other components of architectural design	Implemented other components to architectural design	Balance	(Living Space)	Life	Combination other disciplines' components to architectural design
[41] (Ifani, 2019)	Tourism attractive design	Promote gayo culture in building design	Design can be attractive in tourism	Implemented gayo element on building design	Shape	(Camouflage)	Touch	Making a building in the center of the coffee farm
[42] (Al-Anzi, 2010)	Poor thermal orientation on building design	Solar- conscious design of residential building	Reduce build energy	Built shading to protect the building from solar heat	Shape	(Outside/In)	Warmth	Placing natural environment as shading to protect building from solar heat
[43] (Almusaed, 2019)	Energy efficiency on house design	Define an efficient method of building to get efficient energy	Holistic design to relate thermal comfort and economic factors	Arrange architectural elements to reach efficient energy with minimum cost	Space	(Living Space)	Own movement	Building flexible elements to get natural energy to achieve excellent efficiency in building design
[44] (Wang, 2009)	Zero energy building on house design	Create renewable energy ecosystem in building design	Maximize using natural energy	Use a solar hot water system	Growth	(Outside/In)	Light	Direct sunlight to the whole building to get natural light
[45] (Meutia, 2021)	Achieving Thermal comfort in building design	Vernacular house in Gayo, Aceh	Gayo house design can give internal thermal comfort to the occupant	Investigating Traditional Houses in Gayo	Form	(Camouflage)	Expression	Using nature as support to gain energy efficiency in vernacular building
[46] (Rizal, 2022)	Covid-19 Post Pandemic	Design housing on post Covid- 19 pandemic	To reduce the transmission of the virus	To build a cooling system to reduce virus spreading.	Space	(Outside/In)	Balance	Let natural elements come inside the building
[47] (Ghaziani, 2021)	Biophilic focus on school design	Biophilic design on mental health	Evaluate biophilic design patterns	To make design patterns can be used in school buildings	Space	(Matter)	Thought	Bringing natural elements into the classroom to gain mental health
[48] (Ariani, 2015)	Influence of school design on student performance	Create outdoor spaces for students	To find a better learning space	Built characteristics of physical learning space	Movement	(Matter)	World/Language	Creating an environment on class walls to improve students in saving the environment
[49] (Peters, 2020)	Biophilic architecture design	University learning environment	Improve quality of life and learning	To get a better place, lighting, and ventilation	Form	(Outside/In)	Own movement	Building outdoor classrooms around natural elements
[50] (Candido, 2019)	Open plan office to know each other	Shared between people in high- performance workspaces	The social aspect of building design	Create open plan office	Expression	(Living space)	Ego of other	Building a flexible table for each worker. They can fold if there is no need for it

Source	Issue	Context	Goals	Normal Solution	Illusion Elements	Illusion Strategy	12-Senses	Illusion Solution
[51] (Wang,	Sustainable	Structural	To achieve	Use hybrid	Balance	(Living space)	Balance	Flexible
2014)	building	engineering	intelligent	and semi-				structure to
	design	context	structure	active				adapt to
			technology	vibration				household
				controller				activities
[52] (Bangwal,	Healthy	Reduce	Building can	Employee	Growth	(Outside/In)	Vision color	Bringing
2022)	Workplace	exposure to	be fighting	performance				natural
		viruses	against the	has levelled				elements into
			epidemic	up because				the building's
				they adapt to				interior
				building				
				design				
[53] (Bulbaai,	Energy-	Building on	Evaluate	Creating	Shape	(Outside/In)	Touch	Building
2021)	efficient	tropical	applying the	outdoor and				transition
	building	climate	passive	transition				outdoor area
	design		building	spaces such as				in each corner
			system	balconies				of the building
[54] (Dash, 2018)	Sustainable	Biomimicry	Gain more	Get renewal	Space	(Repose and	Vision color	Building
	design,	on building	efficient	design of the		Silence)		shapes that
	energy	design	energy usage	future building				support
	efficient	_						natural energy
								can save in
								building

In addition to previous findings, the environment is impacted by architectural design and material [55]–[58]. The environment ensures architectural design comfort and combines elements, strategy illusion and 12 senses. Illusion architecture can be the solution for the environment in terms of architectural design. This method uses significantly more environmentally friendly techniques to tackle the architecture design problem than a standard solution. The overall result of the key uses illusions and cannot be seen in Fig. 8.

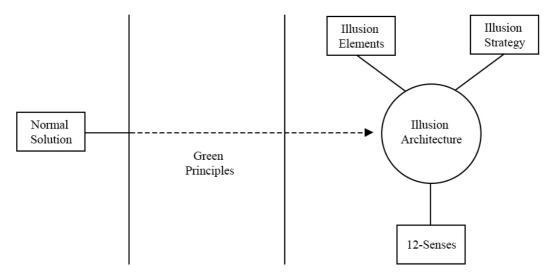


Fig. 8. Transformation framework from standard solution to illusion solution

The transformation from a standard solution to an illusory solution involves many things. Green principles and illusion architecture influence change into illusion solutions. The present illusion solution is influenced by element selection, illusion strategy, and 12 senses. The illusion solution is more effective in protecting the environment than the typical solution.

Conclusion

As a result of environmental urgency in design architecture, the illusion has been attempted to address environmental issues in the present architectural design. However, getting the best results is challenging. This issue is solved by illusion in architectural design since this technique can trick the user into believing something untrue. The user no longer requires additional space as a result of this.

It significantly impacts environmental protection because it does not call for vast areas in an architectural design. The more untouched an environmental ecosystem, the better the environment. With the application of illusion in architectural design, it is hoped that it will bring about changes, especially in terms of a better environment, especially in the lack of land use, and also have a good impact on humans.

Aknowledgments

This research is part of "Penelitian Dasar Unggulan Perguruan Tinggi No.933/PKS/ITS/2021". The authors gratefully acknowledge this financial and technical support. We appreciate all the volunteers who agreed to the interview and completed the survey. We also want to thank the information providers who helped make this research a success.

References

- [1] I. D. Rowland, T. N. Howe, and M. J. Dewar, *Vitruvius: Ten Books on Architecture*. Australia: Cambridge University Press, 2014. doi: 10.1017/CBO9780511840951.
- [2] I. Lytra, C. Carrillo, R. Capilla, and U. Zdun, "Quality attributes use in architecture design decision methods: research and practice," *Computing*, vol. 102, no. 2, 2020, doi: 10.1007/s00607-019-00758-9.
- [3] D. Clements-Croome, "Building environment, architecture and people," *Intelligent buildings: design, management* ..., 2004, [Online]. Available: https://books.google.com/books?hl=en&lr=&id=5EYU9jvsnvsC&oi=fnd&pg=PA53&dq=en vironment+architecture&ots=ZapICIzXdt&sig=e11tLCDNZnhPcJBqHRRRaVBtc34
- [4] W. W. Weisser, M. Hensel, S. Barath, V. Culshaw, and ..., "Creating ecologically sound buildings by integrating ecology, architecture and computational design," *People and ...*, 2023, doi: 10.1002/pan3.10411.
- [5] G. Dickson *et al.*, "Walking on Visual Illusions," *Iperception*, vol. 12, no. 1, 2021, doi: 10.1177/2041669520981101.
- [6] E. P. Mumford, *Habitat: ecology thinking in architecture: Dirk van den Heuvel, Janno Martens, Victor Muñoz Sanz (eds) nai010 publishers, 2020 ISBN 9789462085565 hardback£* Taylor &Francis, 2021. doi: 10.1080/13602365.2021.1984025.
- [7] G. Giordano and P. Gunther, *Illusion In Design: New Trends In Architecture and Interiors*. New York: Rizzoli, 2022.
- [8] NHBC Foundation, *Homes through the decades: The making of modern housing*. 2015. [Online]. Available: www.rcahms.gov.uk:
- [9] D. E. Williams, *Sustainable design: ecology, architecture, and planning*. books.google.com, 2007. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=113fO6Wqh_gC&oi=fnd&pg=PR9&dq=ecology+architecture&ots=jIagRDaM5U&sig=uCH17X8VMNAOWYyaFvaNCPioSV4
- [10] P. Kumari, S. Kapur, V. Garg, and K. Kumar, "Effect of surface temperature on energy consumption in a calibrated building: A case study of Delhi," *Climate*, vol. 8, no. 6, 2020, doi: 10.3390/CLI8060071.
- [11] J. Gaffney *et al.*, "Maximizing value of genetic sequence data requires an enabling environment and urgency," *Glob Food Sec*, vol. 33, 2022, doi: 10.1016/j.gfs.2022.100619.

- [12] E. Kinkaid, *The architecture of ecology: Systems design for sustainable agricultural landscapes.* rave.ohiolink.edu, 2013. [Online]. Available: https://rave.ohiolink.edu/etdc/view?acc_num=ouhonors1366983104
- [13] B. Vale and R. J. D. Vale, "Green architecture: design for a sustainable future / Brenda and Robert Vale.," 1996, Accessed: Sep. 09, 2023. [Online]. Available: https://books.google.com/books/about/Green_Architecture.html?hl=id&id=PpdlQgAACAAJ
- [14] M. Acuto and W. Steele, *Global city challenges: Debating a Concept, Improving the Practice*. London: Palgrave Macmillan, 2013. doi: 10.1057/9781137286871/COVER.
- [15] A. Picon, *The Materiality of Architecture*. Minneapolis: University of Minnesota Press, 2021. doi: 10.5749/J.CTV1DWQ1VQ.
- [16] M. Noghabaei, A. Heydarian, V. Balali, and K. Han, "Trend analysis on adoption of virtual and augmented reality in the architecture, engineering, and construction industry," *Data* (*Basel*), 2020, [Online]. Available: https://www.mdpi.com/663900
- [17] R. Arnheim, *Art and the Visual Perception: A Psychology of the Creative Eye*. California: University of California Press, 1974. Accessed: May 29, 2023. [Online]. Available: https://books.google.com/books/about/Art_and_Visual_Perception.html?hl=id&id=Z7LQRiS M1I4C
- [18] "Circle of Senses, Circle of Stars (Steiners 12 Senses) YouTube." Accessed: Sep. 08, 2023. [Online]. Available: https://www.youtube.com/watch?v=GNgBf4OpTrE
- [19] R. V. Andersen, J. Toftum, K. K. Andersen, and B. W. Olesen, "Survey of occupant behaviour and control of indoor environment in Danish dwellings," *Energy Build*, vol. 41, no. 1, 2009, doi: 10.1016/j.enbuild.2008.07.004.
- [20] N. Ishikawa and M. Fukushige, "Effects of street landscape planting and urban public parks on dwelling environment evaluation in Japan," *Urban For Urban Green*, vol. 11, no. 4, 2012, doi: 10.1016/j.ufug.2012.08.001.
- [21] D. Kalibatas, E. K. Zavadskas, and D. Kalibatiene, "The concept of the ideal indoor environment in multi-attribute assessment of dwelling-houses," *Archives of Civil and Mechanical Engineering*, vol. 11, no. 1, 2011, doi: 10.1016/S1644-9665(12)60176-9.
- [22] A. A. Gamaldo, J. M. McNeely, M. T. Shah, M. K. Evans, and A. B. Zonderman, "Racial differences in self-reports of short sleep duration in an urban-dwelling environment," *Journals of Gerontology Series B Psychological Sciences and Social Sciences*, vol. 70, no. 4, 2015, doi: 10.1093/geronb/gbt117.
- [23] N. Ishikawa and M. Fukushige, "Dissatisfaction with dwelling environments in an aging society: An empirical analysis of the Kanto Area in Japan," *Review of Urban and Regional Development Studies*, vol. 27, no. 3, 2015, doi: 10.1111/rurd.12038.
- [24] M. Bian, Z. Huang, Q. Chen, G. Liu, Y. Zhang, and S. Ding, "Optimization of Plane and Space of New Dwellings in Southern Anhui Province Based on Indoor Thermal Environment," *Sustainability (Switzerland)*, vol. 14, no. 9, 2022, doi: 10.3390/su14095694.
- [25] I. Hidayat and W. Zahrah, "Medan The Vertical Village Design In Kelurahan Aur (With Ecology Architecture Design Approach)," *International Journal of Architecture and* ..., 2017, [Online]. Available: https://talenta.usu.ac.id/ijau/article/view/257

- [26] T. Mao and Q. Li, "Research on the relationship between the formation of local construction culture and geographical environment based on adaptability analysis," *J King Saud Univ Sci*, vol. 35, no. 1, 2023, doi: 10.1016/j.jksus.2022.102387.
- [27] E. Palazzo and S. Wang, "Landscape Design for Flood Adaptation from 20 Years of Constructed Ecologies in China," *Sustainability (Switzerland)*, vol. 14, no. 8, 2022, doi: 10.3390/su14084511.
- [28] K. H. Rahayu, R. Nugroho, and A. Hardiana, "AGROWISATA KOPI DI KLEDUNG KABUPATEN TEMANGGUNG DENGAN PENDEKATAN ARSITEKTUR EKOLOGI," *Arsitektura*, vol. 14, no. 2, 2017, doi: 10.20961/arst.v14i2.9042.
- [29] B. Salgın, Ö. Bayram, A. Akgün, and K. Agyekum, "Sustainable Features of Vernacular Architecture: Housing of Eastern Black Sea Region as a Case Study," *Arts*, vol. 6, no. 4, 2017, doi: 10.3390/arts6030011.
- [30] W. Zahrah and M. H. S. Putra, "Design of Vertical Village in Pantai Burung Village Medan City (Ecology Architecture)," *International Journal of Architecture and Urbanism*, vol. 2, no. 1, 2018, doi: 10.32734/ijau.v2i1.291.
- [31] S. A. Rahman, E. P. Singgih, and W. Setyaningsih, "TAMAN PINTAR DENGAN PENDEKATAN ARSITEKTUR EKOLOGI DI MATARAM," *Arsitektura*, vol. 14, no. 2, 2017, doi: 10.20961/arst.v14i2.9080.
- [32] S. Surya, "Landscape Ecological Urbanism for Restoration of Pallikaranai Marsh Land, Chennai, Tamil Nadu," *Procedia Technology*, vol. 24, 2016, doi: 10.1016/j.protcy.2016.05.227.
- [33] S. Jasper, "Acoustic Ecologies: Architecture, Nature, and Modernist Experimentation in West Berlin," *Ann Am Assoc Geogr*, vol. 110, no. 4, 2020, doi: 10.1080/24694452.2019.1673143.
- [34] P. Kanuch and P. Taus, "Efficiency Possibilities of Energy Management of Apartment Building Use Case," *Advances in Thermal Processes and Energy Transformation*, vol. 5, no. 4, pp. 60–68, 2022, doi: 10.54570/ATPET2022/05/04/0060.
- [35] E. Shagiakhmetova, D. Burkeev, S. Fedorova, and D. Shaikhutdinova, "Improving energy efficiency of rental housing," in *E3S Web of Conferences*, EDP Sciences, Jun. 2021. doi: 10.1051/e3sconf/202127405001.
- [36] A. Sabrina Ismail and N. S. Sa'ezan, "The Application of Rainwater as Architectural Design Elements For Green Technology Solution In Low Rise Office Building," *International Journal of Built Environment and Sustainability*, vol. 5, no. 3, Sep. 2018, doi: 10.11113/ijbes.v5.n3.300.
- [37] M. B. Nielsen and S. Knardahl, "The impact of office design on medically certified sickness absence," *Scand J Work Environ Health*, vol. 46, no. 3, pp. 330–334, 2020, doi: 10.5271/sjweh.3859.
- [38] S. W. Lindsay, M. Jawara, K. Paine, M. Pinder, G. E. L. Walraven, and P. M. Emerson, "Changes in house design reduce exposure to malaria mosquitoes," *Tropical Medicine and International Health*, vol. 8, no. 6, pp. 512–517, Jun. 2003, doi: 10.1046/j.1365-3156.2003.01059.x.

- [39] D. Dan *et al.*, "Passive house design-An efficient solution for residential buildings in Romania," *Energy for Sustainable Development*, vol. 32, pp. 99–109, Jun. 2016, doi: 10.1016/j.esd.2016.03.007.
- [40] N. Sani, "Modern houses design for Malaysian," *Advances in Applied Science Research*, vol. 3, no. 6, pp. 3810–3813, 2012.
- [41] S. M. Ifani, "Local Wisdom in Coffee House Design to Promote Gayo Culture and Tourism," *International Journal of Architecture and Urbanism*, vol. 3, no. 1, pp. 32–42, Mar. 2019, doi: 10.32734/ijau.v3i1.790.
- [42] A. Al-Anzi and O. Khattab, "Solar conscious house design in Kuwait," *Kuwait Journal of Science and Engineering*, vol. 37, no. 2 B, pp. 59–72, Dec. 2010.
- [43] A. Almusaed, A. Almssad, and A. Alasadi, "Analytical interpretation of energy efficiency concepts in the housing design process from hot climate," *Journal of Building Engineering*, vol. 21, pp. 254–266, Jan. 2019, doi: 10.1016/j.jobe.2018.10.026.
- [44] L. Wang, J. Gwilliam, and P. Jones, "Case study of zero energy house design in UK," *Energy Build*, vol. 41, no. 11, pp. 1215–1222, Nov. 2009, doi: 10.1016/j.enbuild.2009.07.001.
- [45] E. Meutia and L. H. Sari, "ADAPTIVE HOUSE DESIGN AND PEOPLE'S HABITS IN ACHIEVING THERMAL COMFORT IN GAYO HIGHLAND ACEH, INDONESIA," *Malaysian Journal of Sustainable Environment*, vol. 8, no. 1, p. 23, Mar. 2021, doi: 10.24191/myse.v8i1.12656.
- [46] F. Rizal and A. Demami, "Rumah Tinggal Pasca Pandemi Covid-19 (A Review on House Design Covid-19 Post Pandemic)," *Jurnal IPTEK*, vol. 6, no. 1, pp. 22–33, 2022.
- [47] R. Ghaziani, M. Lemon, and P. Atmodiwirjo, "Biophilic design patterns for primary schools," *Sustainability (Switzerland)*, vol. 13, no. 21, Nov. 2021, doi: 10.3390/su132112207.
- [48] M. G. Ariani and F. Mirdad, "The Effect of School Design on Student Performance," *International Education Studies*, vol. 9, no. 1, p. 175, Dec. 2015, doi: 10.5539/ies.v9n1p175.
- [49] T. Peters and K. D'Penna, "Biophilic design for restorative university learning environments: A critical review of literature and design recommendations," *Sustainability (Switzerland)*, vol. 12, no. 17, Sep. 2020, doi: 10.3390/su12177064.
- [50] C. Candido, P. Chakraborty, and D. Tjondronegoro, "The rise of office design in high-performance, open-plan environments," *Buildings*, vol. 9, no. 4, Apr. 2019, doi: 10.3390/buildings9040100.
- [51] N. Wang and H. Adeli, "Sustainable building design," *Journal of Civil Engineering and Management*, vol. 20, no. 1. Taylor and Francis, pp. 1–10, 2014. doi: 10.3846/13923730.2013.871330.
- [52] D. Bangwal, J. Suyal, and R. Kumar, "Hotel building design, occupants' health and performance in response to COVID 19," *Int J Hosp Manag*, vol. 103, May 2022, doi: 10.1016/j.ijhm.2022.103212.
- [53] R. Bulbaai and J. I. M. Halman, "Energy-efficient building design for a tropical climate: A field study on the caribbean island curação," *Sustainability (Switzerland)*, vol. 13, no. 23, Dec. 2021, doi: 10.3390/su132313274.

- [54] S. P. Dash, "Application of biomimicry in building design," *International Journal of Civil Engineering and Technology*, vol. 9, no. 2, pp. 644–660, Feb. 2018.
- [55] F. T. B. Samodra, Irvansyah, and C. Erwindi, "Standard review and update for tropical comfort shift of the built environment," in *E3S Web of Conferences*, E. Kusrini, F. H. Juwono, A. Yatim, and E. A. Setiawan, Eds., Nov. 2018, p. 04013. doi: 10.1051/e3sconf/20186704013.
- [56] F. X. T. B. Samodra and I. Irvansyah, "Livable of the past-rural affordable settlement in current urban environment," *IOP Conf Ser Earth Environ Sci*, vol. 780, no. 1, p. 012001, May 2021, doi: 10.1088/1755-1315/780/1/012001.
- [57] A. Hussain and M. A. Kamal, "Energy Efficient Sustainable Building Materials: An Overview," *Key Eng Mater*, vol. 650, pp. 38–50, 2015, doi: 10.4028/www.scientific.net/KEM.650.38.
- [58] E. V Pimenova, M. N. Grigoryan, and P. V Ivanova, "The Use of Spatial Voids in the Formation of High-Rise Buildings Architecture," *Materials Science Forum*, vol. 931, pp. 443–450, 2018, doi: 10.4028/www.scientific.net/MSF.931.443.