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Abstract. The muffler plays a crucial role in reducing the noise generated by the internal combustion 
engine exhaust gases. Therefore, an effective muffler design should be capable of significantly 
reducing noise levels. However, we must also consider backpressure, which can negatively impact 
engine performance. Backpressure is the additional pressure exerted by the muffler towards the 
engine, and it can have adverse effects on engine performance, thus requiring minimization. These 
two objectives often conflict with each other. Hence, in this research, we utilize multiobjective genetic 
algorithms as a tool to optimize muffler design. Inspired by the natural selection process, genetic 
algorithms aim to find a muffler design that is not only effective in reducing noise but also produces 
minimal backpressure. Thus, this study aims to achieve a balance between noise reduction and 
backpressure minimization in muffler design. The multiobjective genetic algorithm proposes 105 
muffler design solutions. These solutions are not dominated by each other against both TL and PL 
objectives. The design that has the best value in the TL objective is solution 1 with TL and PL values 
of 26.06 dBA and 2.27 kPa. The design that has the best value in the PL objective is solution 3 with 
TL and PL values of 8.36 dBA and 1.87 kPa. The muffler compromise design chosen was a solution 
41 with TL and PL values of 17.78 dBA and 2.07 kPa. 

Introduction 
Vehicle mufflers have a major role in dampening the noise generated by internal combustion 

engines[1]–[3]. Excessive noise can be annoying and needs to be reduced, because the adverse effects 
can be felt by the surrounding environment and human health, as well as cause discomfort[4], [5]. 
Therefore, an effective muffler design is one that is able to significantly reduce noise levels. However, 
in the muffler design process, we must also consider the back pressure. Back pressure is the additional 
pressure generated by the muffler that can negatively impact engine performance[6], [7]. This back 
pressure can reduce engine power and increase specific fuel consumption[8]. The challenge is that 
these two parameters, i.e. noise dampening and minimizing back pressure, often contradict each other. 
When muffler designs are optimized to suppress noise, the resulting backpressure tends to increase, 
and vice versa. In situations like this, where a good muffler design is needed for both aspects, namely 
reducing noise and minimizing back pressure, a multi-objective optimization approach is the right 
choice. 

Until now, there have been many multi-objective optimization studies  that use evolutionary 
algorithms, such as multiobjective genetic algorithm (MOGA), to obtain optimal muffler designs[8]–
[14]. They used this method on different types of mufflers in various studies.  The achievements of 
the study show that computational intelligence such as genetic algorithms are superior in terms of 
finding optimal designs. So that in this research researchers will also carry out the same goal where 
optimizing the design of a muffler by considering both objectives using the help of MOGA to achieve 
an optimal design both in reducing noise and minimizing back pressure. The result of this study is an 
optimal muffler design that excels at dampening noise and minimizing back pressure. By obtaining 
an optimal design for a muffler, it can help reduce noise pollution and produce a low reverse pressure 
muffler design, which in turn will improve engine performance and reduce specific fuel consumption. 
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Research Method 
The parameters of the noise reduction ability of a muffler consist of 3 indicators, namely 

transmission loss (TL), insertion loss (IL), and level difference (LD)[3]. Generally, TL and IL are 
often used in many studies. TL is the difference in sound power inside the inlet and the transmitted 
sound wave. IL is the difference in sound power at the same point by using and not using a muffler. 
For back pressure, the parameter used is pressure loss (PL). PL is the pressure difference at the muffler 
inlet and outlet.  PL represents the backpressure  produced due to an increase or decrease in PL in 
line with the backpressure[1], [10], [15]. 

In this study noise reduction parameters use TL and minimizing backpressure use PL. The TL 
value can be approximated using the following equation, refer Eq. 1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is the area of the 
inlet/outlet (𝑥𝑥1), 𝑆𝑆𝑆𝑆𝑥𝑥𝑆𝑆 is the area of the expansion space (𝑥𝑥2), L is the length of the expansion space 
area (𝑥𝑥3), k is the number of waves, which can be calculated using Eq. 2, visual analyser software is 
used to measure the frequency of the muffler sound at idle engine speed [16].  
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𝜆𝜆 = 𝑓𝑓 𝑆𝑆 (3) 

 Where,  
TL  = Transmission loss (dBA) 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  = Cross-sectional area of duct (m2) 
𝑆𝑆𝑆𝑆𝑥𝑥𝑆𝑆  = Cross-sectional expansion chamber (m2) 
k = Number of waves in a distance  
L  = Expansion chamber length (m) 
𝜆𝜆 = Wavelength (m) 
𝑓𝑓 = frequency (Hz) 
  

Then, for PL it can be approached using the following equation, refer Eq. 4 and 5. Where, ∆𝑃𝑃 is 
PL (Pa), 𝜌𝜌 is exhaust gas density (kg/m3), U  is the flow velocity  (m/s), D is the inlet/outlet diameter 
(m), d is the muffler diameter, and 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 is the  length of the muffler expansion section (m) [16].  
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The TL and PL equations above are used as an approach to evaluate the performance of the selected 
parameters, and are used as fit functions in the optimization process using a multiobjective genetic 
algorithm. 

Optimization Formulation. In this study, the design objective is to maximize TL and minimize 
PL. The objective functions of TL and PL have been shown in Eq. 1 and 4. Then for design space 
consists of three design variable, namely inlet / outlet diameter (𝑥𝑥1), muffler diameter (𝑥𝑥2), muffler 
expansion section length (𝑥𝑥3). Description of design variables and their space are presented in Fig. 1 
and Table 1.  
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Fig. 1 Design Variable 

 
Table 1 Desription of Design Variables & Spaces 

Description Code Design Space 

Diameter of inlet/outlet 𝒙𝒙𝟏𝟏 30 mm ≤ 𝑥𝑥1 ≤ 50 mm 

Diameter of muffler 𝒙𝒙𝟐𝟐 110 mm ≤ 𝑥𝑥2 ≤ 190 mm 

Length of expansion section 𝒙𝒙𝟑𝟑 300 mm ≤ 𝑥𝑥3 ≤ 420 mm 

Result and Discussion 
Optimization Procedure. The optimization process uses widely used optimization market 

software. The first step is to create an objective function which is then stored as a fitness function to 
be called upon in the optimization process, objective function using Eq. 1 and 4. The second stage is 
to determine the population size of 300 and the initial population number of 150, the number of 
generation 100, choose the mutation function adaptive feasible,choose the intermediate crossover 
function and choose plot functions pareto front, refer Fig. 2. After the optimization stage is set 
correctly, then finallys, the process runs.  

 

Start

Choose Optimization tool

Choose solver gamutiobj

Call fitness function with 
@filename

Write number of variable, 
lower bound and upper 

bound

Choose population size 300, initial 
populuation 150, selection function 
tournament, mutation function adaptive 
feasible,and plot functions pareto front

Run solver, click 
start

A

A

Finish

 
Fig. 2 Optimization Procedure.  
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Fig. 3 Pareto Front Solutions 

 
Figure 3 above is a pareto front solutions chart. The result of optimization using a multiobjective 

approach is the production of optimal design solutions that are not dominated by each other on both 
objectives called non-dominated solutions. These solutions, if graphed against two objectives, will 
form a graph of pareto solutions. Green dots are optimal muffler design solutions totaling 105 design 
solutions, where the design solutions are not dominated by each other on TL and PL performance. 
While the red dot, the initial design of the muffler, is not included in the row of pareto front solutions, 
meaning that the initial design of the muffler is not an optimal design. After getting pareto front 
solutions that contain optimal muffler designs, the second stage in optimization is to choose one of 
the design solutions according to user references. The options according to user reference are 
presented in Table 2.  

Table 2 Description of Geometrical Data and Performances  
Configuration x1 (mm) x2 (mm) x3 (mm) TL (dBA) PL (kPa) 

Best TL pareto front (solution 1) 30.00 190.00 345.34 26.06 2.27 
Best PL pareto front (solution 3) 48.85 110.52 418.89 8.36 1.87 
Initial design 40 140 390 15.63 2.12 
Best TL (sol. 90) 30.58 134.01 416.67 19.24 2.11 
Best PL (sol. 99) 30.92 110.21 418.51 15.70 2.00 
Compromise (sol. 41) 30.26 121.84 418.25 17.78 2.07 

 
From Table 2, it can be seen carefully that the TL and PL values of the initial design are surpassed 

by other designs. Solution 1 is a muffler design solution when referring to user references who have 
the highest TL muffler desire which means the best in noise reduction. While solution 3 is a muffler 
design solution when referring to user referrals who have the desire for a muffler with the lowest PL 
which means the best in minimizing back pressure. Solution 90 is the best muffler design solution in 
TL and slightly better in PL when compared to the initial design. Solution 99 is the best muffler 
design solution in PL and slightly better in TL than the initial design. The last is solution 41 as a 
compromise solution, where this solution is a muffler design solution that has a position in the middle 
if we look at the graph of pareto solutions, refer Fig. 3, the value of TL and PL in the compromise 
solution still has a better value than the initial design, so users can also choose this design as a muffler 
design solution that is good in TL and PL parameters.  
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Conclusions 
Multiobjective genetic algorithms produce a set of solutions. The best muffler design solutions in 

terms of TL and PL that are not dominated by each other. Users can correctly select each muffler 
design solution at pareto solutions, and will not find the design is not optimal. MOGA can help in 
solving optimization cases where the desired performance parameters are found to conflict with each 
other like this simple muffler case. The multiobjective genetic algorithm proposes 105 muffler design 
solutions. These solutions are not dominated by each other against both TL and PL objectives. The 
design that has the best value in the TL objective is solution 1 with TL and PL values of 26.06 dBA 
and 2.27 kPa. The design that has the best value in the PL objective is solution 3 with TL and PL 
values of 8.36 dBA and 1.87 kPa. The muffler compromise design chosen was a solution 41 with TL 
and PL values of 17.78 dBA and 2.07 kPa. 
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