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Abstract. This paper addresses the critical issue of atmospheric pollution in India, underscoring the 
necessity for precise predictive analytics of Air Quality Index (AQI) data for effective pollution 
control. The study delineates the etiological factors and substantial health hazards correlated with air 
pollution, encompassing elevated mortality rates, respiratory and cardiovascular diseases, and mental 
health complications. The AQI is presented as a necessary component for converting complex air 
quality data into a single, easily understandable metric. The principal aim of this research is to 
facilitate effective pollution control through real-time AQI monitoring and precise future predictions 
for timely interventions. To attain this objective, the research employs the use of boosting algorithms, 
like extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM), and an 
ensemble stack of XGBoost and LightGBM for AQI prediction of four South Indian cities - 
Amaravati, Bengaluru, Chennai, and Hyderabad. The results presented in this paper are based on 
daily data of the aforementioned cities, collected from the Central Pollution Control Board (CPCB) 
website, Government of India, covering the period from May 31, 2019, to November 22, 2023. The 
performance of the deep learning models on the data was found noteworthy, with consistently high 
R² scores and low root mean squared error (RMSE), exhibiting their efficacy in providing accurate 
results. By merging technological innovation with machine learning capabilities, the research aims to 
equip decision-makers with actionable insights for informed pollution mitigation strategies, 
promoting a more sustainable environment. 

1. Introduction 
Atmospheric air constitutes a vital ecological resource essential for the survival of biotic entities 

on Earth. Humans, animals, and plants depend on atmospheric quality, rendering the preservation of 
pristine air paramount for life sustenance. According to the Blacksmith Institute's 2008 report, the 
globe's most severely polluted locales are marred by deteriorating urban air quality and pervasive 
indoor pollution [1]. Outdoor air pollution leads to around 6.7 million deaths globally each year, while 
indoor air pollution also results in significant number of premature deaths annually in certain     
regions. [2,3]. Various sources, including the use of unclean fuels for household purposes in 
developing countries, emissions from furniture and construction materials, and emissions from 
microorganisms cause indoor air pollution. Poor ventilation and additional indoor sources make 
indoor air pollution more complex and often more concentrated than outdoor air pollution [3,4]. 
Addressing the detrimental impacts of air pollution necessitates a dual focus on urban air quality and 
indoor pollution abatement. India, as a rapidly developing nation, grapples with escalating air 
pollution due to swift urbanization and industrial proliferation. The burgeoning population, vehicular 
emissions, and industrial effluents are accelerating atmospheric degradation. Exposure to polluted air 
precipitates both acute and chronic health repercussions. Empirical studies have substantiated that air 
pollutants, such as fine particulate matter (PM2.5) and other noxious substances, elevate mortality 
rates and induce respiratory, cardiovascular, and psychological disorders. Acute exposure to polluted 
air correlates with heightened mortality from all causes, including cardiorespiratory conditions, 
especially among the elderly, while young children exposed to PM2.5 exhibit increased anxiety 
symptoms [7,8]. Data analytics and machine learning paradigms have emerged as robust 
methodologies for enhancing air quality prognostications, offering superior accuracy in pollution 
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assessment and forecasting. Researchers have extensively utilized data-driven and machine learning-
based models for evaluating the quality of air. The AQI serves as an effective communicative 
instrument, translating complex air quality data into accessible terms for public comprehension and 
action. The combination of AQI monitoring, accurate predictions through machine learning, and a 
deep analysis of air quality patterns positions this study as a significant step toward addressing the air 
pollution crisis in India. The remaining segments of the paper is organized as follows: the literature 
review related to the work is covered in Section 2, the research methodology is outlined in Section 3, 
the results are presented in Section 4, and the conclusions are provided in Section 5. 

2. Literature Review 
The unprecedented air pollution rise in India, spurred by rapid urbanization and industrialization, 

mandates an exhaustive examination of contemporary air quality assessment and management 
research. This literature review aims to synthesize the research findings delving into the detrimental 
effects of air pollution in Indian cities, highlighting the significant threats to public health and the 
environment. Integrating machine learning (ML) algorithms emerges as a promising strategy for 
predicting and mitigating air pollution, specifically focusing on enhancing our understanding of the 
intricate dynamics of pollutants. 
2.1 Health Hazards 

Air pollution is emerging as a significant concern which is impacting public health. Studies have 
shown a correlation between exposure to atmospheric pollutants and the incidence of acute lower 
respiratory infections, chronic obstructive pulmonary disease, asthma, and pulmonary   
carcinogenesis [5,8]. PM10 and PM2.5 have been identified as major contributors to deleterious 
respiratory health outcomes, even at minimal pollutant concentrations [31,32]. In India, the situation 
is particularly alarming, where high levels of particulate matter pose a grave concern, necessitating 
policy actions to reduce pollutants and attain immediate health benefits. Controlling outdoor air 
pollution in India can lead to significant health benefits, including reductions in morbidity and 
mortality. However, the distribution and extent of these benefits vary widely across geography, time, 
and populations. Climate change-driven temperature increases exacerbate air quality, but climate 
solutions, such as clean and renewable energy and cool roofs, can improve air quality and health. 
Research indicates that higher air quality is intricately linked to an improved quality of life, which 
offers potential avenues for mitigating the health risks associated with air pollution [33]. Children are 
especially susceptible to the harmful effects of air pollution on their respiratory health, emphasizing 
the need to enhance air quality. Studies have shown that prolonged exposure to air pollution can 
adversely affect lung function development in children, reinforcing the importance of improving air 
quality [34,35]. Additionally, reducing PM2.5 levels has been associated with decreased medical 
costs and less loss of working and living time for patients, demonstrating the health benefits of air 
quality improvement [36]. Thus, it is essential to have efficient air quality management planning in 
place to mitigate the negative consequences of air pollution on human well-being. 
2.2 Monitoring and Analysis of AQI 

Monitoring and analyzing the AQI for comprehending pollution trends is of significant 
importance. A generative time-series model based on a recurrent extension of the variational 
autoencoder (VAE) has been proposed by researchers to forecast major pollution indicators with high 
efficiency [42]. The AQI is a metric widely used for recording and understanding pollution trends. 
Various machine learning algorithms have been proposed for predicting air contamination and 
analyzing the AQI [9,37,38,39]. Sensor-based networks have been developed to monitor air quality 
parameters and predict a locality's sustainability. In addition, dispersion models and control systems 
help understand the distribution and dynamics of pollutants and control air pollutant concentrations. 
Incorporating satellite data alongside statistical and deep learning techniques for AQI forecasting 
during COVID-19 lockdowns have substantially reduced air pollutant levels [43]. These studies have 
demonstrated the efficacy in AQI forecasting by implementing machine learning, achieving high 
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accuracy and outperforming other models. Researchers have investigated the air quality in 
Bangladesh during lockdown periods, revealing a strong correlation between COVID-19 spread and 
air pollution reduction [44]. Similarly, the impact of the lockdown on air quality in Henan, China, 
has been studied, and a decrease in pollutants during the lockdown period has been observed [45]. 
Furthermore, an analysis of the spatial and temporal variations in air quality measures during 
lockdown over the Indo-Gangetic Plain has shown a decline in pollutants and improved regional air 
quality [46]. Analyzing the trend of air pollutant concentrations can be challenging, mainly when 
dealing with data from monitoring networks of varying lengths. However, advanced monitoring 
systems incorporating satellite data and machine learning approaches offer a nuanced understanding 
of pollution trends. This understanding paves the way for designing effective abatement strategies to 
control air pollution levels. 
2.3 Climate Change 

Climate change and air pollution have complex and intertwined interactions, with significant 
environmental and public health consequences. Studies have shown that in the second half of this 
century, temperature changes and emissions of biogenic volatile organic compounds (VOCs) are 
projected to increase ozone concentrations, and addressing climate change can directly and indirectly 
reduce air pollution [47]. However, distinct policy levers are required to tackle both issues. Future 
climate scenarios show improved pollutant concentrations due to reduced emissions despite higher 
temperatures and lower precipitation. Climatic variables such as temperature, rainfall, wind, and 
humidity play a pivotal role in air pollution by affecting pollutant strength, transportation, and 
dispersion. Researchers have emphasized the need to integrate climate change considerations into 
future air quality predictions and policy interventions, and they have highlighted the need for 
improved tools to assess the combined implications of addressing air quality and climate 
change. Current Integrated Assessment Models (IAMs), which are commonly utilized in policy 
development, often employ global or regional marginal response factors to assess the air quality 
impacts of climate scenarios [48]. Still, this approach may lead to inaccurate conclusions. To address 
this gap, researchers have developed computationally efficient methods to measure the air quality 
impacts. The convergence of machine learning with air quality research highlights the potential of 
advanced technologies in facilitating more precise predictions and epidemiological analyses, shaping 
the trajectory of future research and interventions [9,37,38]. Extreme weather events, which are 
becoming increasingly common due to climate change, contribute to air pollution through events such 
as wildfires, releasing large amounts of pollutants into the atmosphere [49,52]. This relationship is 
not unidirectional, as certain pollutants, such as black carbon, can exacerbate climate change by 
absorbing sunlight and contributing to atmospheric warming. Recognizing these connections is 
essential for developing comprehensive plans addressing climate change and air pollution, ensuring 
effective environmental and public health management. 
2.4 Usage of Predictive Analytics 

Machine learning models have been extensively studied and utilized to improve air pollution 
research and prediction. They offer several advantages over conventional methods such as increased 
accuracy, simplified mathematical and statistical approaches, and improved analysis of air pollution 
data. Many machine learning techniques, such as Random Forest, SVM, Decision Trees, LS-SVM, 
and ANN, have been used in air pollution epidemiology [37,38]. These models have been employed 
to evaluate air quality for different regions and analyze air pollution data. XGBoost and LightGBM 
are two prominent machine learning algorithms that have been integrated with web modules to 
provide real-time air quality forecasts [9]. Regression models have been utilized to analyze air 
pollution data, showing noteworthy performances [37,38]. XGBoost has been shown to outperform 
deep learning techniques in estimating the AQI [39]. Random forest regression has demonstrated high 
accuracy and low RMSE in predicting pollution levels [40]. Ensemble voting models, such as the 
AQP-EDLMRA technique, which combines deep learning classification methods, have shown 
improved forecasting performance for air pollutant prediction [41]. 
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3. Proposed Methodology 
The Air Quality Index (AQI) prediction for the four South Indian cities was performed using pre-

processed datasets, which included seven air pollutant attributes: PM10, PM2.5, NO2, NH3, SO2, 
CO, and O3, along with daily AQI values and their respective AQI standards. Given that air quality 
datasets often contain missing or incomplete data, regression models are particularly useful because 
they are robust to such imperfections. These models can effectively manage missing data, providing 
reliable predictions even when some features are absent. Their flexibility and interpretability make 
them suitable for accurate and dependable AQI prediction. In this study, the regressor models used 
were XGBoost, LightGBM, and an Ensemble Stack combining both XGBoost and LightGBM to 
predict the AQI and evaluate the performance of these boosting algorithms. The overall process of 
the methodology is depicted in Fig. 1. 

 
Fig. 1. Architectural Representation of the Research Work. 

3.1 Data Collection 
The research pertains to the study of air pollution and involves the use of data that has been 

downloaded from the CPCB website, under the Department of Environment, Forest, and Climate 
Change, Government of India [55]. The dataset comprises the air pollutant parameters of four South 
Indian cities, namely Amaravati, Bengaluru, Chennai, and Hyderabad. It contains seven distinct 
attributes of Air Pollutants as specified in the Indian System of AQI value calculation. The dataset is 
thus made ready to offer a comprehensive and detailed analysis of the air quality of these four cities, 
based on the aforementioned pollutant parameters. 
3.2 Data Cleaning 

During the data cleansing phase, extensive measures were implemented to address missing values 
and outliers within the dataset. The use of Excel formulas within the spreadsheet, specifically the IF 
and ISBLANK functions, allowed for a systematic approach to handling missing values. A data-
driven approach was employed by filling missing values with the mean of the respective column 
values, as determined by Excel formulas such as AVERAGE and IF. Outliers were identified using 
Excel functions and statistical techniques and removed from the dataset, ensuring the dataset's 
accuracy and representativeness. Excel formulas were used to calculate the mean of the respective 
column values for the missing values and potentially inaccurate data points removed, and this mean 
value was then used to fill in the missing values. The dataset was consistently maintained throughout 
the data cleansing process to ensure its reliability and suitability for further analysis and 
implementation. The cleaned dataset was suitable for extracting meaningful insights, conducting 
statistical analyses, or applying machine learning algorithms, making it a valuable asset for research 
and decision-making. 
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3.3 Calculation of AQI and Evaluation of Air Standards Specified by CPCB 
The daily AQI levels for the pollutants were calculated using a macro-enabled AQI calculator in 

Microsoft Excel, based on the pollutant concentrations extracted from the CPCB website data [55]. 
The formula used for the calculation of the AQI of the pollutant factors is: 

𝐼𝐼𝑝𝑝 =
𝐼𝐼𝐻𝐻𝑖𝑖−𝐼𝐼𝐿𝐿𝑜𝑜

𝐵𝐵𝑃𝑃𝐻𝐻𝑖𝑖−𝐵𝐵𝑃𝑃𝐿𝐿𝑜𝑜
�𝐶𝐶𝑃𝑃 − 𝐵𝐵𝑃𝑃𝐿𝐿𝑜𝑜� + 𝐼𝐼𝐿𝐿𝑜𝑜                                                   (1) 

where 𝐼𝐼𝑝𝑝 denotes the index for pollutant 𝑝𝑝, 𝐶𝐶𝑃𝑃 refers to the truncated concentration of pollutant 𝑝𝑝, 
𝐵𝐵𝑃𝑃𝐻𝐻𝑖𝑖 is the concentration breakpoint at or above 𝐶𝐶𝑃𝑃, 𝐵𝐵𝑃𝑃𝐿𝐿𝑜𝑜  is the concentration breakpoint at or below 
𝐶𝐶𝑃𝑃, 𝐼𝐼𝐻𝐻𝑖𝑖  is the AQI value for 𝐵𝐵𝑃𝑃𝐻𝐻𝑖𝑖, and 𝐼𝐼𝐿𝐿𝑜𝑜 is the corresponding AQI value for 𝐵𝐵𝑃𝑃𝐿𝐿𝑜𝑜. 

The Algorithm followed by the calculator for the calculation of the daily AQI is as follows: 
STEP 1: Start 
STEP 2: Calculate the average AQI for each pollutant over a 24-hour period every day. 
STEP 3: Determine the highest daily average AQI value among all pollutants to identify the most 

impactful pollutant. 
STEP 4: Compute the greatest AQI value across all pollutants to assess the overall air quality 

status. 
STEP 5: Determine the final AQI value. 
STEP 6: End 
The corresponding AQI categories were determined using a Python code that defined a range for 

each AQI Standard as specified by CPCB [55]. The air quality categories are provided in Table 1.  
Table 1. Air Quality Index (AQI) and Standards Specified by CPCB. 

Air Quality Index (AQI) Air Quality Standard 
0-50 Good 

51-100 Satisfactory 
101-200 Moderate 
201-300 Poor 
301-400 Very Poor 
401-500 Severe 

Appropriate Standards were assigned based on the calculated AQI values through the code. A 
new column was added to the Excel sheet to create a comprehensive dataset including the AQI 
Standards. This additional column provides a quick and precise classification of Air Quality 
Standards for each day, facilitating straightforward interpretation and analysis of the data. This 
methodology was used to prepare datasets for all four South Indian cities - Amaravati, Bengaluru, 
Chennai, and Hyderabad. 
3.4 Machine Learning Models 

XGBoost is an extremely efficient and scalable implementation of the gradient boosting 
framework. It leverages parallel processing capabilities, which significantly speeds up the training 
process, especially on multicore machines. XGBoost incorporates techniques such as L1 (Lasso) and 
L2 (Ridge) regularization to control overfitting and enhance the model's generalization capability on 
unseen data. The objective function of XGBoost consists of a loss function and a regularization term. 
The loss function, often a squared error term, measures the difference between the actual and 
predicted values, while the regularization term penalizes model complexity to prevent overfitting. 

The objective function can be expressed as: 

ℒ(θ) = ∑ 𝑙𝑙(𝑦𝑦𝑖𝑖 ,𝑦𝑦𝚤𝚤�)𝑛𝑛
𝑖𝑖=1 + ∑ Ω(𝑓𝑓𝑘𝑘)𝐾𝐾

𝑘𝑘=1                                                 (2) 

where,  𝑙𝑙(𝑦𝑦𝑖𝑖 ,𝑦𝑦𝚤𝚤�) = (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2and Ω(𝑓𝑓) = γ𝑇𝑇 + 1
2
λ|𝑤𝑤|2                                     (3) 
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Here, γ and λ are regularization parameters, 𝑇𝑇 is the number of leaves in the tree, and 𝑤𝑤 is the 
vector of leaf weights. LightGBM is designed for high efficiency and scalability. It employs a 
histogram-based approach for decision tree learning, which reduces the number of split points by 
grouping continuous features into discrete bins, significantly speeding up the training process. 
LightGBM grows trees leaf-wise with depth limitation, splitting the leaf with the largest loss 
reduction among all current leaves. This strategy often results in better accuracy but may lead to 
overfitting if not properly regulated. The objective function in LightGBM is similar to XGBoost, 
incorporating loss and regularization terms. The loss function and regularization terms are adapted 
for the histogram-based and leaf-wise growth approaches, maintaining the balance between model 
complexity and performance. The ensemble stack of LightGBM and XGBoost involves training 
individual LightGBM and XGBoost models and then combining their predictions using a metamodel. 
This approach leverages the strengths of both models, yielding more accurate and robust predictions 
by capturing diverse patterns in the data. The combined predictions are typically achieved by 
averaging the predictions of the individual models or using a meta-model to learn the optimal 
combination of predictions. Experiments with various data split ratios (75-25, 70-30) revealed only 
marginal variations in R² scores and RMSE values for the LightGBM, XGBoost regressors, and their 
ensemble stack. Optimal performance was achieved with an 80-20 split, where all three models 
demonstrated consistently high accuracy, emphasizing the significance of data-split ratio selection in 
influencing model effectiveness. In this work, an 80% training and 20% testing data split was used to 
train and evaluate the regression-based models. The performance of the regressor algorithms was 
assessed using R² and RMSE scores. The R² score, referred as the coefficient of determination, 
indicates the percentage of variation in the dependent variable that the independent variables explain. 
This metric ranges from 0 to 1, where 1 represents a perfect fit. The formula for R² is: 

𝑅𝑅2 = 1 − ∑ (𝑦𝑦𝑖𝑖−𝑦𝑦𝚤𝚤� )2𝑛𝑛
𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1

                                                                (4) 

where, 𝑦𝑦𝑖𝑖 represents the actual values, 𝑦𝑦𝚤𝚤�  denotes the predicted values, and 𝑦𝑦� represents the mean 
of the actual values. The numerator expresses the sum of squared residuals, measuring the total 
deviation of the predicted values from the actual values while the denominator is the total sum of 
squares, measuring the total deviation of the actual values from the mean. A higher R² value indicates 
that a greater proportion of variance is captured by the model. The RMSE measures the average 
magnitude of prediction errors, with lower values indicating superior model performance. The 
formula for RMSE is: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2𝑛𝑛
𝑖𝑖=1                                                          (5) 

where, 𝑦𝑦𝑖𝑖 represents the actual values and 𝑦𝑦𝚤𝚤�  denotes the predicted values. RMSE provides a clear 
metric for comparing the accuracy of different models, as it directly quantifies the typical error 
magnitude in the predictions. The square root ensures that the error is measured in the same units as 
the original values for easier interpretation. 

4. Results and Discussion 
This section provides a detailed examination of the AQI in four Southern Indian cities - 

Amaravati, Bengaluru, Chennai, and Hyderabad. Southern India has diverse geographical features, 
including coastal areas, plains, hills, and forests. This diversity can lead to a wide range of pollution 
sources, such as industrial activities, vehicular emissions, and natural factors. The process of rapid 
urbanization and industrialization in cities like Chennai, Bangalore, and Hyderabad have significantly 
contributed to air pollution through vehicle emissions, industrial activities, and construction. Hence, 
monitoring air quality in urban and industrial areas can provide insights into pollution dynamics in 
these environments. Southern India experiences diverse climatic conditions, including monsoons, 
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tropical climates, and coastal influences. These climate patterns can affect the dispersion and 
accumulation of pollutants in the air, and studying how climate variability influences AQI values can 
enhance our understanding of the complex interactions between meteorological factors and air 
quality. Furthermore, Southern India has seen improvements in research and monitoring 
infrastructure, including air quality monitoring stations. Reliable data collection systems facilitate 
accurate estimation and prediction of AQI values; therefore the study takes into account these four 
South Indian cities to ensure comprehensive analysis. The results presented are based on the day-wise 
data available from 31st May, 2019 to 22nd November, 2023 [55]. 
4.1 Analysis and Discussion 

This section provides individual analyses of the AQI for each city, starting with Amaravati. The 
analysis indicates that Amaravati has an overall good air quality index over four years shown in Fig. 2. 
The data primarily consisted of good days, with only a few satisfactory days. This is a testament to 
the fact that Amaravati has a good green cover around the city, and the city's plantation has made the 
atmosphere and air quality quite good [12]. However, as the city is still developing as Andhra 
Pradesh's capital, it needs larger industrial endeavours with less pollution-related activities to ensure 
good air quality. 

 
Fig. 2. Comparison of AQI Standard of Days from 2019 to 2023 in Amaravati 

The analysis of pollutant concentrations in the air reveals that PM10 concentrations were higher 
than those of all other pollutants, with ozone being the second-highest pollutant contributor and 
Carbon monoxide being the least contributing pollutant. The report suggests that the dust generated 
from construction sites contributes as a major source of particulate matter. As a developing capital 
city, the region's ongoing construction or infrastructure development could significantly contribute to 
elevated PM10 levels shown in Fig. 3. Construction sites are known to have high concentrations of 
suspended particulate matter (PMs), and industrial activities and physical construction are significant 
sources of PM2.5-10 emissions [14]. Studies have shown that PM10 levels around cement industries 
and industrialized coastal cities are significantly higher than control areas [14]. The heavy metals and 
rare-earth elements in atmospheric particulate matter further confirm the impact of industrial 
emissions [26]. Moreover, Amaravati's warm and sunny climate could contribute to the 
photochemical reactions leading to elevated ozone levels [15]. Ozone is a secondary pollutant which 
forms in sunlight through complex photochemical reactions involving precursor pollutants, primarily 
nitrogen oxides and VOCs [16]. Increased sunlight provides the energy needed to drive these 
photochemical reactions, producing ozone from the precursors. 
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Fig. 3. Comparison of Concentration of Air Pollutants from 2019 to 2023 in Amaravati. 

In Bengaluru, the Air Quality Index (AQI) shows that the city experiences a considerable number 
of good days, with some days being satisfactory and very few being moderately polluted. The city's 
green cover and numerous parks serve as natural filters, trapping particulate matter and absorbing 
pollutants, leading to improved air quality [25]. Furthermore, Bengaluru's moderate climate and 
geographical location may contribute to favourable air quality. The city's elevation, temperature, and 
weather conditions can impact how pollutants disperse and dilute, leading to cleaner air as shown 
in Fig. 4. 

 
Fig. 4. Comparison of AQI Standard of Days from 2019 to 2023 in Bengaluru. 

PM10, PM2.5, and Ozone were found to have a greater contribution to pollution than other 
pollutants [17,18,20]. Bengaluru, like many megacities, is facing a rise in air pollution issues due to 
urbanization, industrialization, and economic growth. Prolonged exposure to PM2.5 in Bengaluru has 
been linked with attributable deaths for chronic respiratory disease, coronary artery disease, stroke, 
and lung malignancy [17,19]. Exposure to O3 has also been linked to attributable deaths from 
respiratory diseases [19]. A study also found that air pollution in Bengaluru is increasing due to rising 
temperatures and annual heavy rainfall [21]. The concentration of air pollutants has been shown 
in Fig. 5. 
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Fig. 5. Comparison of Air Pollutant Concentrations from 2019 to 2023 in Bengaluru. 

The Air Quality Assessments conducted for the city of Chennai have revealed air quality that 
ranges from good to moderate days, as shown in Fig. 6. 

 
Fig. 6. Comparison of AQI Standard of Days from 2019 to 2023 in Chennai. 

The primary contributors to air pollution in Chennai include PM10, PM2.5, NO2, and ground-
level ozone as shown in Fig. 7. Particulate matter, both fine and coarse, is primarily caused by 
vehicular emissions, industrial activities, and construction sites [22,23]. PM10 and PM2.5 are the 
major contributors to pollution in Chennai, and their sources include vehicular emissions, 
construction sites, and industrial activities. NO2 is mainly emitted from vehicle exhaust and industrial 
processes, while ground-level ozone is formed through complex chemical reactions. It is noteworthy 
that indoor and outdoor pollution are interrelated, with anthropogenic sources such as vehicle 
emissions and power plant effluents being the primary contributors to both [23,24]. Indoor sources 
of pollution in Chennai include cooking and heating activities, as well as the use of cleaning agents 
and personal care products [24]. 

 
Fig. 7. Comparison of Concentration of Air Pollutants from 2019 to 2023 in Chennai. 
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Meanwhile, in Hyderabad, the air quality remains a pressing concern due to consistently high 
levels of PM10 and PM2.5 pollution as shown in Fig. 8. Particulate matter originates from a range of 
sources, like vehicle emissions, road dust, coal combustion in industries, burning of garbage, and 
secondary particulate matter. High concentrations of particulate matter pose a significant health risk 
to the population, with PM2.5 being associated with chronic obstructive pulmonary disease 
(COPD) [26]. The persistence of elevated particulate matter levels throughout the city emphasizes 
the need for sustained efforts to mitigate pollution sources and improve air quality 
management practices. 

 
Fig. 8. Comparison of Concentration of Air Pollutants from 2019 to 2023 in Hyderabad. 

Despite the city experiencing a mix of good and satisfactory air quality days over the years, there 
are also instances of moderate, poor and very poor air quality, as illustrated in Fig. 9. This variability 
underscores the need for sustained efforts to mitigate pollution sources and enhance air quality 
management practices. Industrial activities prove to be a potential source of air pollution in 
Hyderabad, and targeted interventions are necessary to reduce their impact [28,29]. Additionally, the 
use of clean energy sources and the implementation of green transportation options in the city can 
help reduce the levels of air pollution. 

 
Fig. 9. Comparison of AQI Standard of Days from 2019 to 2023 in Hyderabad. 

4.2 Predictions by Machine Learning Models 
This study examines day-wise air quality data from the Central Pollution Control Board (CPCB) 

website [55], covering the period from May 31, 2019, to November 22, 2023, to evaluate the 
performance of predictive deep learning models. After thorough preprocessing of raw data, 
comprehensive datasets were created for the four South Indian cities. The datasets were partitioned 
into training and testing subsets in an 80:20 ratio, with data randomly ordered to ensure that both 
subsets offered a balanced and representative sample of the overall dataset. This randomized 
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allocation was essential in preventing temporal biases that could occur in time-ordered splits, thus 
enhancing model robustness and generalizability across different periods. By randomly sampling data 
points for training and testing, this method ensured a comprehensive reflection of the data's inherent 
variability, thereby minimizing overfitting and providing a more accurate assessment of model 
performance. This split in data also demonstrated lower root mean square error (RMSE) and higher 
R² scores, outperforming other split configurations such as 75:25 and 70:30. The RMSE for both the 
training and testing sets was regularly monitored, and early stopping was applied to cease the training 
process when performance metrics showed signs of degradation, further reducing the risk of 
overfitting. 

The study evaluates three deep learning architectures—XGBoost, LightGBM, and an ensemble 
stack combining both—on the prepared air quality datasets of four South Indian cities, using R² and 
RMSE as key performance metrics, as illustrated in Tables 2-5. LightGBM, with its histogram-based 
algorithm, provides advantages in computational efficiency and scalability, particularly with 
extensive datasets, whereas XGBoost is noted for its capability in modeling complex patterns within 
the data. The ensemble model, combining LightGBM and XGBoost, aimed to exploit the strengths 
of both models, producing a more robust predictor of air quality levels. State-of-the-art research 
highlights the effectiveness of XGBoost and LightGBM for urban air quality prediction. Notably, 
LightGBM’s histogram-based approach has been shown to improve training speed and accuracy, as 
demonstrated in studies on air quality data from urban areas such as Beijing [53]. Moreover, the 
inclusion of key air quality indicators, such as PM2.5, nitrogen dioxide, and sulphur dioxide has 
shown to contribute to the precision of predictions [54]. XGBoost’s proficiency in time series analysis 
has shown enhanced forecasting abilities by leveraging historical trends to predict future air quality 
levels [54]. Recent literature also supports the use of hybrid models that integrate regression 
techniques with XGBoost, effectively addressing overfitting and boosting predictive robustness [54]. 

Table 2. Comparison of Model Performance for AQI Prediction in Amaravati. 
City Algorithm R2 Score RMSE 

Amaravati 
XGBoost 0.9960 0.5668 

LightGBM 0.9968 0.5125 
Ensemble Stack 0.9965 0.5353 

Table 3. Comparison of Model Performance for AQI Prediction in Bengaluru. 
City Algorithm R2 Score RMSE 

Bengaluru 
XGBoost 0.9870 2.0229 

LightGBM 0.9848 2.1846 
Ensemble Stack 0.9612 3.4924 

Table 4. Comparison of Model Performance for AQI Prediction in Chennai. 
City Algorithm R2 Score RMSE 

Chennai 
XGBoost 0.9969 0.9540 

LightGBM 0.9972 0.9132 
Ensemble Stack 0.9962 1.0637 

Table 5. Comparison of Model Performance for AQI Prediction in Hyderabad. 
City Algorithm R2 Score RMSE 

Hyderabad 
XGBoost 0.9985 1.6507 

LightGBM 0.9982 1.8373 
Ensemble Stack 0.9935 3.4767 

The results indicate that the model performance varied across cities, with LightGBM consistently 
achieving lower RMSE and higher R² scores in cities like Amaravati and Chennai, while XGBoost 
excelled in Bengaluru and Hyderabad, demonstrating its ability to effectively capture feature 
relationships in these regions. The Ensemble Stack, however, underperformed, especially in 
Bengaluru and Hyderabad, likely due to noise introduced by combining models or suboptimal 
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weighting that may have increased prediction error. When models were compared based on RMSE 
and R² scores, both XGBoost and LightGBM displayed strong predictive capabilities, with 
LightGBM showing a slight advantage in most instances. The ensemble approach, however, yielded 
mixed results, often leading to increased RMSE, indicating lower generalizability than 
individual models. 

          
          Fig. 10. Visualization of Predictive                         Fig. 11. Visualization of Predictive  
                 Performance of LightGBM.                                      Performance of XGBoost. 

 
Fig. 12. Visualization of Predictive Performance of Ensemble Model. 

For evaluating the predictive performance of the three models, scatter plots of predicted versus 
actual AQI values provided a clear visualization of each model's accuracy. In each scatter plot, a 
reference line (y = x) represented ideal predictions, where the model outputs matched actual values 
accurately. The scatter plot of the LightGBM model, as illustrated in Fig. 10, shows a strong 
alignment with the reference line, demonstrating a tight clustering of points especially in the low to 
moderate AQI range (0–150). It also indicates minimal deviation even at higher AQI levels, 
underscoring the model's high predictive accuracy across the entire AQI spectrum. XGBoost similarly 
maintained a reasonable degree of accuracy, with data points clustering near the equality line in the 
lower AQI range as shown in Fig. 11. However, it exhibited a slightly more scatter at elevated AQI 
levels. The Ensemble model resulted more variability at high AQI levels as illustrated in Fig. 12, 
where its predictions deviated more significantly from actual values, potentially due to noise or 
suboptimal weighting in the model integration. 

These findings suggest that either XGBoost or LightGBM should be selected based on regional 
data characteristics, while the ensemble model requires further refinement to improve its utility in air 
quality forecasting applications. Further exploration into the underlying factors influencing model 
performance in each city could enhance our understanding of geographic-specific trends, providing a 
foundation for more tailored and robust predictive frameworks in future 

Conclusion and Future Work 
Air pollution remains a pressing issue in India, significantly impacting human health and the 

environment. Despite efforts to mitigate this challenge, further research is essential to identify and 
implement sustainable, long-term solutions for pollution control. The convergence of COVID-19 
with air pollution dynamics in urban settings has created an opportunity for valuable insights into 
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how environmental and health crises may interact, underscoring the need for comprehensive air 
quality management strategies. Integrating these insights can play a crucial role in reducing health 
risks and environmental damage, which is further validated by numerous global studies advocating 
for stringent policy actions to curb pollutants. Within this framework, advanced monitoring systems 
and machine learning technologies have become vital to Indian urban air quality management, 
providing predictive accuracy and actionable insights for policymakers. Future research can expand 
into developing spatiotemporal models for each primary air pollutant across various regions in India. 
By leveraging advanced geostatistical frameworks, these models could provide detailed analyses of 
pollution patterns at different spatial and temporal scales, improving the precision of air quality 
predictions across diverse zones. This approach would enable a targeted understanding of pollution 
sources and variations, supporting region-specific interventions. Furthermore, spatiotemporal models 
would enhance predictive capabilities by accounting for both location-based and time-based factors, 
enabling more adaptive and responsive pollution management strategies. Through such an integrative 
approach, modeling techniques could greatly contribute to a comprehensive solution for India’s 
escalating air pollution crisis. These findings can guide policymakers in crafting informed, 
sustainable policies that effectively address pollution levels, fostering a healthier and more 
sustainable environment for future generations. 
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