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Abstract. This research uses a multi-domain technique to give a thorough analysis of mechanical
gears health evaluation that includes time, frequency, and time-frequency signal analysis. The
research seeks to discover patterns indicative of healthy, partially damaged, or fully damaged gear
states using a variety of graphical representations, including time and frequency plots, the Short-Time
Fourier Transform (STFT), and scalograms which are visual representations of the wavelet transform
of a signal. Advanced machine learning models are used to improve diagnostic accuracy when manual
identification of these trends becomes difficult. The goal is to achieve a validation accuracy greater
than 70% a threshold selected based on prior studies indicating that this level ensures reliable fault
detection for industrial applications while balancing computational constraints. The reliability and
effectiveness of gear monitoring systems can be increased by integrating contemporary signal
processing and machine learning approaches, as demonstrated by this research, which also advances
the identification of gear faults. Among the conclusions are the outcomes of tests done to identify
gear problems in which authors were able to train a model with more than 72% accuracy and able to
propose Artificial Intelligence model for classification of faults in gears.

1. Introduction

Mechanical gears are a fundamental part in many industrial applications such as automotive,
aerospace, and manufacturing systems [1]. Failure to this part can lead to costly downtime,
operational inefficiencies, and potential safety hazards [2]. So, to avoid these unexpected failures, the
condition monitoring of gears has become a critical area of research in which vibration signal analysis
is widely recognized for its ability to detect anomalies in gear operation [3]. Traditional fault detection
approaches, such as time-domain and frequency-domain analyses struggle to identify early-stage
defects due to the complex nature of vibration signals [4]. While techniques like Fast Fourier
Transform (FFT) and Short-Time Fourier Transform (STFT) provide frequency-based insights and
may fail to capture non-stationary signal variations. So, as a result, machine learning (ML) techniques
have emerged as a powerful alternative, enabling automated fault detection by recognizing patterns
that are not easily distinguishable through manual inspection [5]. A time frequency analysis was
applied in industrial bearing and a pattern was observed for fault with a specific behavior but lacks
accuracy at specific instants [6]. Vibration signals and thermal images were used for CNN, a type of
deep learning model, but the model failed at some instant when there are uneven surrounding
interventions [7]. At different variable working conditions signal processing, machine learning
techniques and deep learning models were implemented, but the model needs high computational
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power and difficult to implement at industrial sites [8]. Combination of 1D and 2D CNN used in
Power Quality Disturbance (PQD) classification but requires processing time for training of neurons
[9]. Hybrid Genetic Feature Selection (HGFS) framework was developed but lacks computational
efficiency and requires a lot of processing time [10]. Recent studies, such as [9] have explored the
use of deep reinforcement learning for real-time gear fault diagnosis, achieving higher accuracy but
still facing challenges in computational efficiency. A web application that takes machine sensor data
as input to predict the possibility of downtime of the machine and it needs good accuracy of the model
to predict the life of the gears [11]. Based on previous literature, the current trends have a limitation
of computational storage as with the adopted implementation of deep leaning and feature extraction
it requires a much computational power in the form of Graphical Processing Unit [12]. Also, it will
not be feasible for real-time monitoring. So based on these, the simplified approach needs to be
adopted in which a machine learning-based fault diagnosis framework needs to implement that
integrates signal processing and supervised learning for enhancing the accuracy of gear condition
monitoring [13]. Different feature extraction and selection techniques need to be implemented to
optimize the dataset and train a classification model to distinguish between different conditions in
gear and predict their health through predictive maintenance [14].

Based on the previous work it is desired to do fault diagnosis of gears through a simplified approach
which can also be implemented in Internet of Things. Therefore, in this research, a setup is fabricated
in which meshing of gears performed and data is extracted through sensor and different signal
processing techniques were implemented in it. Finally, supervised learning is performed though
which Al model obtained and implemented for real-time diagnosis of gears.

2. Methodology

The overall methodology includes a data acquisition process for the meshing of gears section.
Arduino Mega 2560 Rev3 acquired that data and then processed further in MATLAB for fault

detection in gears as shown in Figure 1.
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Fig. 1. Workflow of Experiment
2.1. Experimental Setup

The experimental setup used in this study is a gear-driven mechanical system with two shafts in which
one shaft is attached to a DC motor directly while the other shaft is free at both ends. Different
voltages were applied to the D.C motor and meshing of the gears were performed for different
conditions of the spur gears. Initially three different classifications were implemented in the gears.
Containing Healthy Gears in which the spur gears are in their healthy state, Partial Broken Teeth in
which one of the teeth is broken and Partially Broken Gear in which a complete tooth is broken as
shown in Figure 2.
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Fig. 2. a. Healthy(H) b. Partially Broken Gear (PBG) c. Partially Crack Teeth (PCT)

The experimental setup is such that gears are attached to the shafts aligned parallel to each other and
rotation of one shaft causes the meshing of the two spur gears. The shafts are passed through bearing
housing in which an accelerometer is mounted that is responsible for capturing vibration of gears.
The data is captured on Arduino Mega 2560 Rev3 and further processed in SUMILINK. The Arduino
Mega 2560 Rev3 was selected for its high analog input resolution (10-bit ADC), sufficient digital I/O
pins (54), and compatibility with Simulink for real-time data acquisition, making it more suitable than
alternatives like Arduino Uno or Raspberry Pi [15]. The experimental setup is shown in Figure 3.

Gear Mesh Region
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~ -

D.C Motor

Gears combinations

Fig. 3. a. Experimental Setup b. Accelerometer Axis

The accelerometer (ADXL335) is fixed to the bearing housing and records vibration on two axis that
is x-axis and z-axis along the third axis where vibration is zero as it is along the shaft, so there will
be minimum vibration in that axis. The data is acquired from only x-axis and z-axis to record
maximum vibrations of the bearing housing generated through the gear meshing.

2.2. Data Acquisition

To gather and analyze data in real-time for this investigation, the Arduino Mega 2560 Rev3
microcontroller was integrated with the ADXL335 accelerometer and Simulink. The sampling time
was adjusted to remove aliasing errors in it and for its Nyquist frequency criteria is implemented to
set the sampling rate equal to twice the operating frequency [16]. The data is acquired at three distinct
voltage levels that are at 10V, 15V, and 20V. These voltages chosen to simulate a range of operational
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speeds typical in industrial gear systems, capturing diverse dynamic behaviors [17]. The Simulink
model ran for 10 seconds for each voltage level, recording 1001 data points for the vibrations of the
X-axis and Z-axis. The dataset was divided into 70% for training, 15% for validation, and 15% for
testing, as this arrangement offered enough resolution to record the mechanical vibrations produced
by the shafts and gears under various operating circumstances. Signal processing and fault
categorization were then performed on the data [18].

2.3.  Signal Processing

To examine and contrast the behavior of the gear system under the three operating conditions the
healthy (H), partially broken gear (PBG), and partially cracked teeth (PCT) a variety of signal
processing techniques were applied to the vibration data to find any noticeable variations in the
vibration patterns that would lead to gear failures. The signal processing techniques used in this
research are time-domain analysis, frequency-domain analysis with the Fast Fourier Transform
(FFT), and time-frequency analysis with the Short-Time Fourier Transform (STFT).

2.3.1. Time-Domain

Time-domain analysis was used to track variations in vibration amplitude over time and look for any
obvious anomalies like spikes or irregularities that would point to gear failures. The vibration data
time-domain signals were made for each of the three gear circumstances at each voltage levels as
shown in Figure 4. At the time-domain approach there were no appreciable visual variations between
the PCT, PBG, and Healthy sections and no anomaly in the data from healthy and defective gears
was identified. This is due to the noise factor that the sensor encounters during vibration
measurements.

Comparison of Healthy, PBG, and PCT at 10V, 15V, and 20V
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Fig. 4. Time-Domain Vibration Signals for Healthy, Partially Broken Gear, and Partially Cracked
Teeth Conditions at 10V, 15V, and 20V

2.3.2. Frequency domain analysis

-50

The Fast Fourier Transform (FFT) was performed on time-domain data to obtain additional
understanding of the frequency properties of the vibration signals. By breaking down the time-
domain signal into its frequency components, this transformation makes it possible to pinpoint
prominent frequencies that may be connected to gear failures. For each of the three voltage levels the
FFT was figured out and the frequency spectrum that was produced were shown for comparison as
shown in Figure 5.
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Frequency Domain Comparison of Healthy, PBG, and PCT at 10V, 15V, and 20V
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Fig. 5. Frequency-Domain Spectra of Vibration Signals for Healthy, Partially Broken Gear, and
Partially Cracked Teeth Conditions at 10V, 15V, and 20V

As shown in Fig.6, same as for time-domain analysis, the frequency spectra did not show any
significant differences between Healthy, PBG, and PCT conditions, which means a more advanced
approach is required for accurate prediction of gears.

2.3.3. Fourier Transform in Short Time (STFT)

STFT was used to capture the time-varying nature of the frequency content in the vibration signals.
It is possible to observe how the frequency components vary over time through STFT time frequency
representation of the signal. Therefore, the behavior of signal in frequency and time domain can be
checked. This is especially helpful in identifying intermittent defects or transient behavior that might
not be seen in the whole frequency band. As shown in Figure 6 STFT results did not show any
noticeable or consistent differences between the working and malfunctioning gears despite this
thorough investigation and further confirming the subtlety of the faults.
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Fig. 6. STFT at each signal
2.3.4. Scalograms

The Scalograms, which are visual representations of the wavelet transform of a signal, are used to
analyze time-frequency characteristics. They are generated when there is a need for time localization
for short duration and high frequency events. The scalogram images are produced through applying
wavelet transform to the signal. The scalograms of all the profiles are shown in Figure 7. In the current
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case, it also does not show any prominent pattern which can be used as an identification to draw some
useful conclusion regarding the profile of gear.

PBG20V - Scalogram (CWT)
i ITh .]"I T NIRRT ...‘:.I . r.-lll )

PCT20V - Scalogram {CWT)

H20V - Scalogram {CWT)
i it M

Tand T and a0l
EN.m im im
T & &
=y =4 =4
E] g g
g g g
" 1g0 g0 " 1gP
0 2 4 [} 8 10 0 2 4 [} 8 10
Time (s) Time (s)
H10V ogram {CWT) PBG10V - Scalogram (CWT)
WA [T i
gmz " gmz g
& g [
= =4 =4
E] g g
g g g
10 10 .
] 2 4 ] & 10 a 2 4 ] & 10
Time {s) Time {s)
H15Y - Scalogram {CWT) PBG15Y - Scalogram (CWT)
~ 3 ~ 3 -
EN.m im i
& [ [
& & &
a a a
g g g
* 100 " 100 u‘
0 2 4 [} 8 10 0 2 4 [} 8 10
Time () Time {8}

Fig. 7. Scalogram Images

The scalograms analytical methods showing the vibration signals from the healthy, partial broken
gear, and partial crack teeth gears did not show any appreciable or distinct changes. The discovery
implies that conventional signal processing techniques would not be enough in capturing the nuanced
aspects of gear defects in this specific configuration. Consequently, machine learning techniques will
be further investigated for improved fault identification.

3. Machine Learning Model Development

The model was trained through supervised learning. The steps involved are divided into the
preparation of data and through supervised learning training of developed model through labeled data
as shown in Figure 8. The cross validations of 10 are adopted in which the data is divided into 10
sections (folds) that means that on nine sections, the model is trained, and on the remaining part, it is
tested [19]. Ten times through this process, one test set is used for each fold. By using this method,
overfitting is prevented, a situation in which the model performs well with training data but badly
with unknown data.
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3.1. Feature Extraction

A total of 15 features were extracted from the extracted signals that belongs to time-domain and
frequency-domain. The time-domain features are calculated using statistical measures from the raw
signal over time. It is used to capture useful characteristics of amplitude variations over time and are
used in various domains, especially in fault diagnosis. There are a total of 15 features in time-domain
and in spectral kurtosis shown in Table 1.

Table 1. Time Domain Features

Time Domain Features

Sr# Features

Mean

Standard Deviation (Std)
Skewness

Kurtosis

Peak-to-Peak

Root Mean Square (RMS)
Crest Factor

Shape Factor
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Margin Factor

Energy
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Table 2. Spectral Kurtosis Features

Spectral Kurtosis
Sr# Features
Spectral Kurtosis Mean
Spectral Kurtosis Std
Spectral Kurtosis Skewness
Spectral Kurtosis Kurtosis

AW |[—

3.2. Feature Selection

There was a total of 15 features that were extracted shown in Table 1 so RelieF algorithm used which
is a feature selection method that ranks features based on their relevance to the target variable to
identify and remove features with a negative impact that are identified and removed. So, after using
RelieF algorithm the results are shown in Figure 9.

Feature importance scores sorted using ReliefF algorithm
I | T

Features

0 0.01 0.02 0.03 0.04 0.05 0.06
Importance scores

Fig. 9. Selected Features Using RelieF algorithm

The results illustrate the feature selection process using the RelieF algorithm, which evaluates all 15
features shown in Table 1 and removes four with negative impact, resulting in an optimized set of 11
features for model training. Consequently, a total of 11 features were extracted and the model is
trained based on these features to enhance the accuracy.

3.3. Results and Discussions

The model shows 72% accuracy through the Fine Tree Model. The accuracy of all the trained models
is shown in Figure 10.
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Fig. 10. ML Model Comparison

Through it can be identified, the accuracy of Fine Tree and Medium Tree Al models gives the highest

accuracy, generating overall accuracy of 72%. The confusion matrix is shown in Figure 11.
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Fig. 11. Confusion matrix

The trained model can predict the Healthy state with an accuracy of 61% and have a high ability to
predict the defective two cases to be 78.3%. The Receiver Operating Characteristic (ROC) curve is
plotted in which the relation is between the true positive rate (sensitivity) versus the false positive
rate for various categorization thresholds. It gives an indication of how well the model can distinguish
between the various classes. Area Under the ROC Curve (AUC) summarizes the model ability to
distinguish between positive and negative classes in a single numerical value. Excellent performance
is indicated by a model with an AUC near 1, whereas performance that is no better than random
guessing is represented by an AUC of 0.5. The ROC curve of trained model is shown in Figure 12.
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It shows that the AUC to be closed to one for the defective two cases and around 0.81 for the Healthy
state. The above results show the accuracy of the model which can be implemented to any system to
figure out the health assessment of spur gears and in the later stage able to predict the maintenance
of spur gears through statistical analysis of the required-results. The result produced showed the Tree
model to have most accuracy compared to all the other models.

Model 2.1: Tree
Status: Traimed

Training Results

Accuracy (Walidation) T2 2%

Total cost (WValidation) 50

Frediction speaed ~ 1000 obsisec
Training times 17172 sec
Model size (Compact) ~13 kKB

Fig. 13. Trained Model Result.

The Tree model was successfully trained and validated giving validation accuracy of 72.2% showing
that nearly this percent of prediction made by model validation were correct. The total validation cost
is shown in Figure 13 in which the total cost value of 50 refers to the misclassification cost or loss
function value during validation. It basically indicates a predefined penalty on the model performance
during validation. Also, the model has the capability of predicting 1000 observations per second. The
approximately time of training is 17.172 seconds showing that it is trained relatively faster. The
model’s weight is approximately 13kB, showing a lightweight mode.

The validation accuracy of 72% achieved by the Fine Tree Model exceeds the target of 70%, which
was selected as a practical benchmark based on the complexity of the vibration signals and the
computational limitations of real-time monitoring systems. Achieving higher accuracy, such as 8§0%,
would require more advanced feature extraction techniques or deeper models, which could increase
computational demands and make the system less feasible for industrial deployment. Conversely, an
accuracy below 70% would likely result in unreliable fault detection, as observed in prior studies
[20], leading to increased false positives or negatives. So, based on this, the overall performance is
good, suitable for real-time monitoring and useful where computational efficiency is of priority.
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4. Conclusion

The main objective of this study was to use an accelerometer to collect data from the gear meshing
profile, which was well accomplished. Many signals processing methods, including time-domain
analysis, frequency-domain analysis, Short-Time Fourier Transform (STFT), and scalograms, were
applied to the raw vibration data. Even though, the signal processing techniques were unable to
produce patterns that might be used to discern between the various states of the equipment. This made
a more sophisticated method necessary. These limits were addressed using machine learning, which
developed a supervised learning model with an initial accuracy of 68% by extracting 15 important
features from the raw signal. Eleven optimized features remained after more refining using the RelieF
algorithm eliminated any characteristics that had a detrimental effect or were superfluous. As a result,
the accuracy of the model increased to 72%. The Tree model was proposed giving the highest
accuracy compared to others adopting the current scheme of work. The model presented in this work
is a potential real-time gear condition monitoring solution, and its application to Industry 4.0 contexts
for predictive maintenance could be expanded. Additionally, this work shows that feature refinement
can improve the accuracy of machine learning-based models. Subsequent investigations may
investigate the utilization of deep learning methodologies, such as those proposed by[21], to enhance
the precision and versatility of the model on increasingly intricate datasets. While the model achieved
a validation accuracy of 72%, surpassing the 70% target, future recommendations could explore
advanced deep learning techniques to push the accuracy closer to 80%, potentially at the cost of
increased computational resources.
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