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Abstract. In this paper, the axially-symmetric MHD (magnetohydrodynamic) slip fluid flow and heat 
transfer between a rotating disk and a stationary permeable disk has been examined. The physical 
system is comprised of a free-fluid region with an underlying fluid-saturated porous bed with a solid 
base. The fluid flow within the free-fluid region is modeled using the Navier-Stokes equation, 
whereas the flow within the porous bed is described using the Brinkman equation. The governing 
equations of fluid flow and heat transfer, along with the associated boundary conditions, are reduced 
to a system of ordinary differential equations using suitable similarity transformations. A series 
expansion technique is then employed in order to obtain analytical approximations for the velocity 
and temperature distributions. The results produced in this study are presented in graphical form. 
Unless otherwise stated, the following non-dimensional values are used for the numerical 
calculations: Hartmann number 𝑀𝑀 = 1 , Reynolds number 𝑅𝑅 = 0.1 , Darcy parameter 𝛽𝛽 = 0.05 , 
thermal conductivity ratio 𝜆𝜆 = 0.5, Eckert number 𝐸𝐸𝐸𝐸 = 10, slip parameter 𝑁𝑁∗ = 0.05, 𝜂𝜂 = 1, and 
Prandtl numbers 𝑃𝑃𝑟𝑟1 = 𝑃𝑃𝑟𝑟2 = 10. The influence of the Darcy parameter, Hartmann number and 
thermal conductivity ratio on the flow velocity and fluid temperature are investigated. 

Introduction 
The study of fluid flows with heat transfer is of tremendous importance in engineering and the 

physical sciences. An important physical phenomenon that has long since become a vital part of 
hydrodynamics is the flow of fluid between rotating disks. Applications of this type of fluid flow can 
be found in the fields of biomedical engineering, chemical engineering and geophysics. In particular, 
the study of flows through porous media between rotating disks is useful for understanding the 
extraction of fluid from porous ground, the underground flow of crude oil, industrial filtration 
processes and the lubrication of porous bearings [1, 2]. 

Porous media flows between rotating and stationary disks are commonly described using either 
Darcy’s equation or the Brinkman equation. Ehrhardt [3] explored coupling conditions at the 
interface between a free-flowing fluid and a fluid-saturated porous medium. The author noted that the 
use of the Navier-Stokes equations for the free-flow and Darcy’s Law for the flow through the porous 
medium is inherently difficult, since the structures of the corresponding differential equations are 
fundamentally different. Neale and Nader [4] wrote about the relative advantage of Brinkman’s law 
over Darcy’s law, and mentioned that the lack of a macroscopic shear term in Darcy's model made it 
incompatible with the existence of a boundary layer region in the porous medium. 

Saxena and Kumar [5] considered the MHD flow of fluid bounded by rotating disks. The 
Brinkman model was used to describe the flow of viscous fluid through the porous region. Hamza [1] 
studied the influence of uniform suction on MHD porous media flow due to an infinite permeable 
rotating disk. The flow domain is comprised of a free fluid region and a porous (Brinkman) region. 
Similarity transformations were used to reduce the governing equations to a set of nonlinear ordinary 
differential equations, which were solved using a series approximation technique. Gunakala et al. [6] 
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used the Brinkman model to investigate the heat transfer and flow of two immiscible fluids through a 
channel with porous beds, and the governing equations were solved using the finite element method. 

The influence of radiation on the flow of fluid through a porous medium over a permeable rotating 
disk with velocity slip was studied by Jain and Bohra [7]. The Brinkman model was used to describe 
the flow through the porous medium, and temperature-dependent fluid properties were considered. 
Hayat et al. [8] used the Darcy-Brinkman-Forchheimer model to investigate the steady 
three-dimensional slip flow of nanofluid through a porous region located above a rotating disk. The 
governing equations for velocity, temperature and concentration were solved using the Optimal 
Homotopy Analysis Method, and the effects of viscous dissipation, Brownian motion and 
thermophoresis were examined. Gul et al. [9] considered the melting of a material and unsteady flow 
of the melted liquid over a permeable rotating disk under the influence of a uniform transverse 
magnetic field. The governing Brinkman and energy equations were solved using the homotopy 
analysis method, and the influence of relevant dimensionless parameters was investigated.  

Sibanda and Makinde [10] conducted a numerical study on the steady MHD flow and heat transfer 
in a porous medium that is bounded by a rotating disk. In their study, the influence of Ohmic heating, 
viscous dissipation and Hall currents were considered. Jogie and Bhatt [11] explored the flow and 
heat transfer of a viscous incompressible fluid between a rotating solid disk and a stationary 
fluid-saturated naturally permeable disk. The flow was separated into 3 regions; a free-flow region, a 
Brinkman region and a Darcy region. In their study, the Beavers-Joseph condition was used to model 
the tangential slip between the Brinkman and Darcy regions. The governing differential equations 
were solved using a series expansion method and the shooting method. The results were presented 
using velocity profiles, streamlines and temperature profiles. 

To the best of the authors’ knowledge, the combined effects of fluid slip and Ohmic heating on the 
two-layer flow of fluid between two disks in the presence of an applied magnetic field have not been 
investigated in the existing literature. Therefore in the present work, the novel problem of a two-layer 
MHD slip flow and heat transfer with Ohmic heating between a rotating solid disk and a stationary 
permeable disk with a solid base is considered. The flow within the free-fluid region is governed by 
the Navier-Stokes equation and the flow within the porous region is described using the Brinkman 
model. A series expansion method is used to obtain approximations for the flow velocities and fluid 
temperature in each region. The effects of Hartmann number, Darcy parameter, slip parameter and 
thermal conductivity ratio on the velocity and temperature profiles in the free-fluid region (located 
below the rotating disk) and the underlying Brinkman region are examined in the absence and 
presence of an applied magnetic field.  

Mathematical Model 
The steady axially-symmetric flow of a laminar and incompressible Newtonian fluid between a 

rotating solid disk and a stationary fluid-saturated porous disk is investigated, where the vertical 
distance ℎ between the disks is equal to the thickness of the porous disk as shown in Figure 1. The 
rotating solid disk is located at 𝑧𝑧 = ℎ, and has angular velocity Ω and constant temperature 𝑇𝑇𝑢𝑢. The 
stationary permeable disk has a solid base that is located at 𝑧𝑧 = −ℎ and has constant temperature 𝑇𝑇𝑙𝑙 
(where 𝑇𝑇𝑙𝑙 ≠ 𝑇𝑇𝑢𝑢). A uniform magnetic field with strength 𝐵𝐵0 is applied to the system so that the 
Lorentz force induced by this magnetic field acts in the radial and angular directions. The transfer of 
heat between the rotating disk and the stationary disk is considered along with Ohmic heating. The 
Navier-slip condition on the rotating disk and the no-slip condition on the solid base is considered, 
and it is assumed that the velocity, temperature, shear stress and heat flux are continuous at the 
interface between the free-flow and porous regions. 
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Figure 1: Schematic Diagram 

 
Assuming that external forces on the fluid and the effects of thermal radiation and viscous dissipation 
are negligible, the governing equations for the problem are given below [11-13]. 
Zone I (Free-fluid region, 0≤z≤h): 
Continuity Equation: 

𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

+ 𝑢𝑢
𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0.                                                                                                                                   (1) 
 
Momentum Equations: 
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𝜕𝜕𝜕𝜕
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𝜕𝜕𝜕𝜕
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� − 𝜎𝜎𝐵𝐵02𝑣𝑣.                                                                       (3) 

 

𝜌𝜌 �𝑢𝑢 𝜕𝜕𝜕𝜕
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𝜕𝜕𝜕𝜕2
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�.                                                                        (4) 
 
Energy Equation: 

𝝆𝝆𝝆𝝆 �𝒖𝒖 𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏
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𝝏𝝏𝟐𝟐𝝏𝝏
𝝏𝝏𝝏𝝏𝟐𝟐

+ 𝟏𝟏
𝝏𝝏
𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏

+ 𝝏𝝏𝟐𝟐𝝏𝝏
𝝏𝝏𝝏𝝏𝟐𝟐
� + 𝝈𝝈𝑩𝑩𝟎𝟎

𝟐𝟐(𝒖𝒖𝟐𝟐 + 𝒗𝒗𝟐𝟐).       (5) 

 
Zone II (Brinkman region, –ℎ ≤ 𝑧𝑧 ≤ 0): 
Continuity Equation: 

 
𝜕𝜕𝑢𝑢𝑏𝑏
𝜕𝜕𝜕𝜕

+ 𝑢𝑢𝑏𝑏
𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝑏𝑏
𝜕𝜕𝜕𝜕

= 0.            (6) 
 
Momentum Equations: 
 
−𝜕𝜕𝜕𝜕𝑏𝑏

𝜕𝜕𝜕𝜕
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+ 𝜕𝜕2𝑢𝑢𝑏𝑏
𝜕𝜕𝜕𝜕2

− 𝑢𝑢𝑏𝑏
𝜕𝜕2
− 𝑢𝑢𝑏𝑏

𝑘𝑘∗
� − 𝜎𝜎𝐵𝐵02𝑢𝑢𝑏𝑏 = 0.       (7) 
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𝑘𝑘∗
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Energy Equation: 
 
𝜌𝜌𝐸𝐸 �𝑢𝑢𝑏𝑏

𝜕𝜕𝑇𝑇𝑏𝑏
𝜕𝜕𝜕𝜕

+ 𝑤𝑤𝑏𝑏
𝜕𝜕𝑇𝑇𝑏𝑏
𝜕𝜕𝜕𝜕
� = 𝑘𝑘2 �

𝜕𝜕2𝑇𝑇𝑏𝑏
𝜕𝜕𝜕𝜕2

+ 1
𝜕𝜕
𝜕𝜕𝑇𝑇𝑏𝑏
𝜕𝜕𝜕𝜕

+ 𝜕𝜕2𝑇𝑇𝑏𝑏
𝜕𝜕𝜕𝜕2

� + 𝜎𝜎𝐵𝐵02(𝑢𝑢𝑏𝑏2 + 𝑣𝑣𝑏𝑏2) + 𝜇𝜇
𝑘𝑘∗

(𝑢𝑢𝑏𝑏2 + 𝑣𝑣𝑏𝑏2 + 𝑤𝑤𝑏𝑏
2). (10) 

 
where 𝑟𝑟 and 𝑧𝑧 are the radial and axial coordinates; 𝑢𝑢 , 𝑣𝑣  and 𝑤𝑤  are the radial, angular and axial 
velocity components in the free-fluid region; 𝑢𝑢𝑏𝑏, 𝑣𝑣𝑏𝑏 and 𝑤𝑤𝑏𝑏 are the radial, angular and axial velocity 
components in the Brinkman region; 𝑝𝑝 , 𝑇𝑇  and 𝑘𝑘1  are the pressure, temperature and thermal 
conductivity in the free-fluid region; and 𝑝𝑝𝑏𝑏, 𝑇𝑇𝑏𝑏, 𝑘𝑘2 and 𝑘𝑘∗ are the pressure, temperature, thermal 
conductivity and permeability in the Brinkman region. The fluid density, viscosity, fluid specific heat 
capacity, electrical conductivity and the magnetic flux density are denoted by 𝜌𝜌, 𝜇𝜇, 𝐸𝐸, 𝜎𝜎 and 𝐵𝐵0 
respectively. The associated boundary conditions are: 
 
𝑢𝑢 = 𝑁𝑁 𝜕𝜕𝑢𝑢

𝜕𝜕𝜕𝜕
, 𝑣𝑣 = 𝑟𝑟Ω + 𝑁𝑁 𝜕𝜕𝑣𝑣

𝜕𝜕𝜕𝜕
, 𝑤𝑤 = 0 and 𝑇𝑇 = 𝑇𝑇𝑢𝑢 when 𝑧𝑧 = ℎ.     (11) 

 
𝑢𝑢 = 𝑢𝑢𝑏𝑏, = 𝑣𝑣𝑏𝑏 , 𝑤𝑤 = 𝑤𝑤𝑏𝑏, 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝑢𝑢

𝜕𝜕𝜕𝜕
= 𝜕𝜕𝜕𝜕𝑏𝑏

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝑢𝑢𝑏𝑏

𝜕𝜕𝜕𝜕
, 𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝑣𝑣𝑏𝑏
𝜕𝜕𝜕𝜕

,  

𝑇𝑇 = 𝑇𝑇𝑏𝑏 and 𝑘𝑘1
𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕

= 𝑘𝑘2
𝜕𝜕𝑇𝑇𝑏𝑏
𝜕𝜕𝜕𝜕

 at 𝑧𝑧 = 0.         (12) 
 
𝑢𝑢𝑏𝑏 = 𝑣𝑣𝑏𝑏 = 𝑤𝑤𝑏𝑏 = 0 and 𝑇𝑇 = 𝑇𝑇𝑙𝑙 at 𝑧𝑧 = −ℎ.                  (13) 

 
where 𝑁𝑁∗ is the Navier slip parameter.  
 
Method of Solution 

Let 𝜉𝜉 = 𝜕𝜕
ℎ
 and 𝜂𝜂 = 𝜕𝜕

ℎ
 be the non-dimensional axial and radial coordinates respectively, and consider 

the Von Karman transformations 

𝑢𝑢 = 𝑟𝑟Ω𝐹𝐹(𝜉𝜉), 𝑣𝑣 = 𝑟𝑟Ω𝐺𝐺(𝜉𝜉), 𝑤𝑤 = �𝜇𝜇Ω
𝜌𝜌
𝐻𝐻(𝜉𝜉), 𝑢𝑢𝑏𝑏 = 𝑟𝑟Ω𝐹𝐹𝑏𝑏(𝜉𝜉), 𝑣𝑣𝑏𝑏 = 𝑟𝑟Ω𝐺𝐺𝑏𝑏(𝜉𝜉), 

𝑤𝑤𝑏𝑏 = �𝜇𝜇Ω
𝜌𝜌
𝐻𝐻𝑏𝑏(𝜉𝜉), 𝑝𝑝 = 𝜇𝜇Ω𝑃𝑃∗(𝜉𝜉) + 𝜌𝜌

2
𝐾𝐾Ω2𝑟𝑟2, 𝑇𝑇 = [𝑇𝑇𝑢𝑢 − 𝑇𝑇𝑙𝑙]𝜃𝜃(𝜉𝜉) + 𝑇𝑇𝑙𝑙,  

𝑝𝑝𝑏𝑏 = 𝜇𝜇Ω𝑃𝑃𝑏𝑏∗(𝜉𝜉) + 𝜌𝜌
2
𝐾𝐾Ω2𝑟𝑟2, 𝑇𝑇𝑏𝑏 = [𝑇𝑇𝑢𝑢 − 𝑇𝑇𝑙𝑙]𝜃𝜃𝑏𝑏(𝜉𝜉) + 𝑇𝑇𝑙𝑙.       (14) 

 
Approximations for the velocity and temperature within the free-fluid and Brinkman regions are 
obtained by taking the following series expansions [15] for low Reynolds number:  
 
𝐹𝐹(𝜉𝜉) = 𝑅𝑅𝐹𝐹1(𝜉𝜉) + 𝑅𝑅3𝐹𝐹2(𝜉𝜉) + 𝑂𝑂(𝑅𝑅5),   𝐹𝐹𝑏𝑏(𝜉𝜉) = 𝑅𝑅𝐹𝐹1𝑏𝑏(𝜉𝜉) + 𝑅𝑅3𝐹𝐹2𝑏𝑏(𝜉𝜉) + 𝑂𝑂(𝑅𝑅5).  (15) 
 
𝐺𝐺(𝜉𝜉) = 𝐺𝐺1(𝜉𝜉) + 𝑅𝑅2𝐺𝐺2(𝜉𝜉) + 𝑂𝑂(𝑅𝑅4), 𝐺𝐺𝑏𝑏(𝜉𝜉) = 𝐺𝐺1𝑏𝑏(𝜉𝜉) + 𝑅𝑅2𝐺𝐺2𝑏𝑏(𝜉𝜉) + 𝑂𝑂(𝑅𝑅4).  (16) 
 
𝐻𝐻(𝜉𝜉) = 𝑅𝑅3/2𝐻𝐻1(𝜉𝜉) + 𝑅𝑅7/2𝐻𝐻2(𝜉𝜉) + 𝑂𝑂�𝑅𝑅11/2�,  
𝐻𝐻𝑏𝑏(𝜉𝜉) = 𝑅𝑅3/2𝐻𝐻1𝑏𝑏(𝜉𝜉) + 𝑅𝑅7/2𝐻𝐻2𝑏𝑏(𝜉𝜉) + 𝑂𝑂�𝑅𝑅11/2 �      (17) 
𝜃𝜃(𝜉𝜉) = 𝜃𝜃1(𝜉𝜉) + 𝑅𝑅2𝜃𝜃2(𝜉𝜉) + 𝑂𝑂(𝑅𝑅4), 𝜃𝜃𝑏𝑏(𝜉𝜉) = 𝜃𝜃1𝑏𝑏(𝜉𝜉) + 𝑅𝑅2𝜃𝜃2𝑏𝑏(𝜉𝜉) + 𝑂𝑂(𝑅𝑅4).  (18) 
 
𝐾𝐾 = 𝐾𝐾1 + 𝑅𝑅2𝐾𝐾2 + 𝑂𝑂(𝑅𝑅4)          (19) 
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Substituting these series expansions and comparing the coefficients of the lowest powers of 𝑅𝑅, the 
equations below are obtained. 
 
First Set of Equations: 
 
𝐹𝐹1′′ − 𝑀𝑀2𝐹𝐹1 = 𝐾𝐾1 − 𝐺𝐺12, 𝐺𝐺1′′ − 𝑀𝑀2𝐺𝐺1 = 0, 𝐻𝐻1′ = −2𝐹𝐹1, 𝜃𝜃1′′ + 𝜂𝜂2𝑀𝑀2𝑃𝑃𝑟𝑟1𝐸𝐸𝐸𝐸𝐺𝐺12 = 0  (20) 
 
𝐹𝐹1𝑏𝑏′′ − �𝑀𝑀2 + 1

𝛽𝛽
� 𝐹𝐹1𝑏𝑏 = 𝐾𝐾1, 𝐺𝐺1𝑏𝑏′′ − �𝑀𝑀2 + 1

𝛽𝛽
� 𝐺𝐺1𝑏𝑏 = 0, 𝐻𝐻1𝑏𝑏′ = −2𝐹𝐹1𝑏𝑏,   

𝜃𝜃1𝑏𝑏′′ + 𝜂𝜂2𝑃𝑃𝑟𝑟1𝐸𝐸𝐸𝐸 �𝑀𝑀2 + 1
𝛽𝛽
�𝐺𝐺1𝑏𝑏2 = 0        (21) 

 
Second Set of Equations: 
𝐹𝐹2′′ − 𝑀𝑀2𝐹𝐹2 = 𝐻𝐻1𝐹𝐹1′ + 𝐹𝐹12 − 2𝐺𝐺1𝐺𝐺2 + 𝐾𝐾2, 𝐺𝐺2′′ − 𝑀𝑀2𝐺𝐺2 = 2𝐹𝐹1𝐺𝐺1 + 𝐻𝐻1𝐺𝐺1′ ,   
𝐻𝐻2′ = −2𝐹𝐹2, 𝜃𝜃2′′ − 𝑃𝑃𝑟𝑟2𝐻𝐻1𝜃𝜃1′ + 𝜂𝜂2𝑀𝑀2𝑃𝑃𝑟𝑟2𝐸𝐸𝐸𝐸(𝐹𝐹12 + 𝐺𝐺1𝐺𝐺2) = 0     (22) 

 
𝐹𝐹2𝑏𝑏′′ − �𝑀𝑀2 + 1

𝛽𝛽
�𝐹𝐹2𝑏𝑏 = 𝐾𝐾2, 𝐺𝐺2𝑏𝑏′′ − �𝑀𝑀2 + 1

𝛽𝛽
� 𝐺𝐺2𝑏𝑏 = 0,   𝐻𝐻2𝑏𝑏′ = −2𝐹𝐹2𝑏𝑏,   

𝜃𝜃2𝑏𝑏′′ − 𝑃𝑃𝑟𝑟2𝐻𝐻1𝑏𝑏𝜃𝜃1𝑏𝑏′ + 𝜂𝜂2𝑃𝑃𝑟𝑟2𝐸𝐸𝐸𝐸 ��𝑀𝑀2 + 1
𝛽𝛽
� (𝐹𝐹1𝑏𝑏2 + 𝐺𝐺1𝑏𝑏𝐺𝐺2𝑏𝑏) + 𝐻𝐻1𝑏𝑏

2

𝜂𝜂2
� = 0.    (23) 

 
The associated boundary conditions are 
𝐹𝐹𝑛𝑛(1) = 𝑁𝑁∗𝐹𝐹𝑛𝑛′(1), 𝐻𝐻𝑛𝑛(1) = 0 for 𝑛𝑛 = 1,2,  
𝐺𝐺1(1) − 𝑁𝑁∗𝐺𝐺1′(1) = 𝜃𝜃1(1) = 1 and 𝐺𝐺2(1) − 𝑁𝑁∗𝐺𝐺2′(1) = 𝜃𝜃2(1) = 0     (24) 
 
𝐹𝐹𝑛𝑛(0) = 𝐹𝐹𝑛𝑛𝑏𝑏(0), 𝐹𝐹𝑛𝑛′(0) = 𝐹𝐹𝑛𝑛𝑏𝑏′ (0), 𝐺𝐺𝑛𝑛(0) = 𝐺𝐺𝑛𝑛𝑏𝑏(0), 𝐺𝐺𝑛𝑛′ (0) = 𝐺𝐺𝑛𝑛𝑏𝑏′ (0), 𝐻𝐻𝑛𝑛(0) = 𝐻𝐻𝑛𝑛𝑏𝑏(0),  
𝜃𝜃𝑛𝑛(0) = 𝜃𝜃𝑛𝑛𝑏𝑏(0) and 𝜃𝜃𝑛𝑛′ (0) = 𝜆𝜆𝜃𝜃𝑛𝑛𝑏𝑏′ (0) for 𝑛𝑛 = 1,2      (25) 
 
𝐹𝐹𝑛𝑛𝑏𝑏(−1) = 𝐺𝐺𝑛𝑛𝑏𝑏(−1) = 𝐻𝐻𝑛𝑛𝑏𝑏(−1) = 𝜃𝜃𝑛𝑛𝑏𝑏(−1) = 0 for 𝑛𝑛 = 1,2     (26) 
 
In order to visualize the fluid flow within the free-fluid and Brinkman regions, the stream 

functions 𝜓𝜓 and 𝜓𝜓𝑏𝑏 [14] are considered as defined by 
 
𝜓𝜓 = 𝜂𝜂2𝐻𝐻(𝜉𝜉)  and 𝜓𝜓𝑏𝑏 = 𝜂𝜂2𝐻𝐻𝑏𝑏(𝜉𝜉)         (27) 

 
with boundary conditions 

 
𝜓𝜓 = 0 at 𝜉𝜉 = 1;  𝜓𝜓 = 𝜓𝜓𝑏𝑏 at 𝜉𝜉 = 0; and 𝜓𝜓𝑏𝑏 = 0 at 𝜉𝜉 = −1.     (28) 
 

The equations and corresponding boundary conditions obtained in (20)-(28) are solved analytically 
using the mathematical software Maple, and then the results obtained from this analytical solution are 
presented graphically using the mathematical software MATLAB. 

 
Discussion of Results 

Numerical results are obtained from the analytical approximations and presented as graphical plots 
of velocity and temperature for different values of the Darcy parameter, Hartmann number, thermal 
conductivity ratio and slip parameter. Unless otherwise stated, the following non-dimensional values 
are used for the numerical calculations: 𝑀𝑀 = 1, 𝑅𝑅 = 0.1, 𝛽𝛽 = 0.05, 𝜆𝜆 = 0.5, 𝐸𝐸𝐸𝐸 = 10, 𝑁𝑁∗ = 0.05, 
𝜂𝜂 = 1, 𝑃𝑃𝑟𝑟1 = 𝑃𝑃𝑟𝑟2 = 10. For ease of notation in the graphical plots, the radial, angular and axial flow 
velocity components, the fluid temperature and the stream function are denoted by 𝐹𝐹, 𝐺𝐺, 𝐻𝐻, 𝑇𝑇 and 𝜓𝜓 
(respectively) in the free-fluid and Brinkman regions.  

Figures 2 to 5 display the velocity components 𝐹𝐹, 𝐻𝐻, 𝐺𝐺 and temperature 𝜃𝜃 for different values of 
the Darcy parameter 𝛽𝛽. From figures 2 to 4, it is seen that when 𝛽𝛽 increases, the magnitude of the 
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velocity components 𝐹𝐹, 𝐻𝐻 and 𝐺𝐺 are increased in both free-fluid and Brinkman regions; this is caused 
by an increase in the permeability of the Brinkman region and a corresponding increase in flow 
resistance within the porous medium. The frictional heating generated by this increased flow 
resistance within the Brinkman region causes the fluid temperature to increase (Figure 5) when 𝛽𝛽 is 
increased. 

                  

                 
 

 

                 
 

 
 
Figures 6 to 9 illustrate the impact of varying the Hartmann number 𝑀𝑀 on the velocity components 

𝐹𝐹, 𝐻𝐻, 𝐺𝐺 and temperature 𝜃𝜃. The results indicate that the plots for 𝐹𝐹, 𝐻𝐻 and 𝐺𝐺, for relatively small 
values of 𝑀𝑀, are similar in pattern to the ones obtained without the MHD influence. It is also noticed 
that in the absence of a magnetic field (𝑀𝑀 = 0), the radial and axial velocity profiles (Figure 6 and 7) 
are approximately parabolic with the maximum magnitude occurring within the free-fluid region 
(near the upper disk); this is consistent with the work of Krishna, Rao, and Murthy [16]. However, the 
values of each velocity component attained with non-zero values of 𝑀𝑀 is lower than that obtained 
with 𝑀𝑀 = 0. This is due to a resistive force which (as per Faraday’s Second Law) is produced by the 
conducting fluid moving through a magnetic field. This effective drag on the fluid, is larger for 
stronger magnetic fields [13] (reflected by larger values of Hartmann number 𝑀𝑀). Consequently, the 
flow velocity decreases as 𝑀𝑀 increases. Indeed, the plot for each component (𝐹𝐹, 𝐻𝐻 and 𝐺𝐺), for a 
relatively large value of 𝑀𝑀 (for example 𝑀𝑀 = 3), suggests that the drag force produced is large 
enough to significantly alter or distort the flow patterns obtained for relatively small values of 𝑀𝑀. The 

Figure 2: Plot of 𝜉𝜉 vs 𝐹𝐹 for different 
values of 𝛽𝛽 

Figure 3: Plot of 𝜉𝜉 vs 𝐻𝐻 for different values 
of 𝛽𝛽 

Figure 4: Plot of 𝜉𝜉 vs 𝐺𝐺 for different 
values of 𝛽𝛽 

Figure 5: Plot of 𝜉𝜉 vs 𝜃𝜃 for different 
values of 𝛽𝛽 
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large drag force is further enhanced by other resistive forces being induced by fluid particles moving 
outwards or upwards, as described earlier. These forces could account for the relative shift of the 
maximum value of the curves for 𝑀𝑀 = 3. It is observed in Figure 8 that increasing the value of 𝑀𝑀 
causes an increase in the angular velocity slip on the rotating disk; this is due to an increase in the 
angular velocity gradient near the disk as the strength of the magnetic field increases. Moreover, the 
temperature in the free-fluid and Brinkman regions increases with increased 𝑀𝑀 (Figure 9) due to an 
enhancement of Ohmic heating within the fluid. 
 

                 
 

 

 

                 
 

 
                  
The influence of the slip parameter 𝑁𝑁∗ on the velocity components 𝐹𝐹, 𝐻𝐻, 𝐺𝐺 and temperature 𝜃𝜃 are 

displayed in Figures 10 to 13. These figures show that each of the velocity components is reduced 
when 𝑁𝑁∗ increases; this is caused by a reduction in the centrifugal forces acting on the fluid as the 
adhesion of fluid particles on the surface of the rotating disk is decreased. It is also noticed that there 
is a region near the rotating disk within which a reversal of fluid flow occurs in the radial and axial 
directions (Figure 10 and 11); this region increases in size as 𝑁𝑁∗ is increased. The temperature within 
the free-fluid and Brinkman regions increase with increased 𝑁𝑁∗ as a result of a reduction in thermal 
advection.  
 

Figure 6: Plot of 𝜉𝜉 vs 𝐹𝐹 for different 
values of 𝑀𝑀 

Figure 7: Plot of 𝜉𝜉 vs 𝐻𝐻 for different 
values of 𝑀𝑀 

Figure 8: Plot of 𝜉𝜉 vs 𝐺𝐺 for different 
values of 𝑀𝑀 

Figure 9: Plot of 𝜉𝜉 vs 𝜃𝜃 for different 
values of 𝑀𝑀 
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Figure 14 shows the variation of fluid temperature with different values of the ratio 𝜆𝜆 of thermal 

conductivities in the porous and free-flow regions. The thermal conductivity ratio 𝜆𝜆 was found to 
have no significant impact on the velocity of the fluid; however, 𝜆𝜆 has a significant effect on the 

Figure 10: Plot of 𝜉𝜉 vs 𝐹𝐹 for different 
values of 𝑁𝑁∗ 

Figure 11: Plot of 𝜉𝜉 vs 𝐻𝐻 for different 
values of 𝑁𝑁∗ 

Figure 12: Plot of 𝜉𝜉 vs 𝐺𝐺 for different 
values of 𝑁𝑁∗ 

Figure 13: Plot of 𝜉𝜉 vs 𝜃𝜃 for different 
values of 𝑁𝑁∗ 

Figure 14: Plot of 𝜉𝜉 vs 𝐺𝐺 for different values of 𝜆𝜆 
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temperature profiles. When 𝜆𝜆 is increased, the transfer of energy from the rotating solid disk to the 
stationary porous disk through the fluid is reduced. Consequently, as shown in Figure 18, increasing 
𝜆𝜆 leads to a reduction in the temperature of the fluid. 

It is observed in Figure 15 that when the value of 𝛽𝛽 is increased, the spacing of the streamlines is 
reduced in both the free-fluid and non-porous regions; this is consistent with an increase in flow 
velocity in each region as 𝛽𝛽 increases (see Figures 2 to 4). Furthermore, the distortion of streamlines 
in the porous region is reduced for increasing values of 𝛽𝛽 due to a decrease in flow resistance as the 
permeability of the porous medium increases.  

 
 

 
 

 
Figure 15: Streamline Plots for Different Values of 𝛽𝛽 

 

The magnitude of the stream function within the free-fluid and Brinkman regions decreases with 
increased M (Figure 16) due to the suppression of fluid flow by the applied magnetic field. It is seen 
in Figure 17 that the values of the stream function decrease as the slip parameter 𝑁𝑁∗ is increased; this 
is consistent with a reduction in flow velocity with increased 𝑁𝑁∗ (see Figures 10 to 12). Moreover, the 
size of the flow reversal region increases with increased 𝑁𝑁∗ until a complete flow reversal occurs in 
the radial and axial directions when 𝑁𝑁∗ is sufficiently large (𝑁𝑁∗ = 0.2).  

 
 
 

𝛽𝛽 = 0.01 𝛽𝛽 = 0.05 

𝛽𝛽 = 0.1 𝛽𝛽 = 0.5 
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Figure 16: Streamline Plots for Different Values of 𝑀𝑀 

 

                  
 

 

𝑀𝑀 = 0 𝑀𝑀 = 1 

𝑀𝑀 = 2 𝑀𝑀 = 3 

𝑁𝑁∗ = 0.05 𝑁𝑁∗ = 0.1 
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Figure 17: Streamline Plots for Different Values of 𝑁𝑁∗ 

Conclusions 
The present work investigates the steady fluid flow and heat transfer between a rotating disk and a 

stationary fluid-saturated permeable disk in the presence of a transverse magnetic field. Based on the 
results obtained in this study, the main conclusions are as follows: 

• The magnitude of the flow velocity in the free-flow and porous regions can be increased by 
increasing the Darcy parameter, and can be reduced by increasing the strength of the magnetic 
field. Furthermore, the flow velocity can be reduced by increasing fluid slip on the rotation 
disk. 

• The temperature of the fluid in the free-flow and porous regions can be increased by 
increasing the Darcy parameter, Hartmann number and slip parameter, and by decreasing the 
thermal conductivity ratio. 

• The displacement of streamlines from the vertical axis is greater as the radial coordinate η 
increases.  

• The magnitude of the stream function can be increased by increasing the Darcy parameter and 
decreasing the magnetic field strength. The stream function values are decreased by 
increasing the fluid slip on the rotating disk 

The size of the flow reversal region increases when the amount of fluid slip on the rotating disk is 
increased. 
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