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Abstract. Present, artificial intelligence methods play a huge role in solving complex engineering 
problems such as the fracture toughness of materials, which is one of the parameters to be considered 
for engineering design. Fracture toughness tests can be prepared materials and test configured in a 
variety of ways, resulting in different fracture toughness depending on the preparation method. In this 
study, fracture toughness of PMMA under the effect of loading rate is one of the testing configs that 
can be adjusted according to the actual load characteristics of the material and the crack geometry 
(crack width and crack length ratio) according to crack preparation to test specimens and the effect 
of these factors was predicted with generalized regression neural network (GRNN) and Gaussian 
processes regression (GPR) models which are one of the artificial intelligence models, compared to 
traditional fracture toughness predictions. The results showed that artificial intelligence prediction 
was able to more accurately predict the effect of the factors studied on the fracture toughness of 
PMMA compared to the traditional fracture toughness prediction. 

Introduction 
Present, artificial intelligence methods play a huge role in solving complex engineering problems, 

such the fracture toughness of materials, which is one of the parameters to be considered for 
engineering design. Fracture toughness is a parameter in fracture mechanics that studies the behavior 
of a material where cracks or discontinuities occur and are subjected to external loads. It is commonly 
known that the fracture toughness values of materials depends on the type of material, loading 
characteristics, and geometry of the testing specimen [1]. To know how the above factors affect 
fracture toughness most of the general methods have to be tested on real materials which will cause 
quite a lot of expenses. For this reason, this study aims to create an equation that can be used to predict 
the effect of such factors on the fracture toughness of materials using artificial intelligence methods 
(AI) that are popular in the materials field today [2]. The widely used AI algorithm such as generalized 
regression neural network [3] and Gaussian processes regression [4] were selected to a created a 
prediction model based on actual fracture toughness obtained from experiments. The fracture 
toughness testing, AI prediction modeling, and results of AI model prediction performance compared 
to traditional prediction were described in the next section of this study. 

Mode I Fracture Toughness Testing 
In this study, the effect of loading rate and crack geometry (crack width and ratio of crack length 

to specimen width) on mode I fracture toughness of poly(methyl methacrylate) sheet or PMMA sheet 
which is widely used in lab-scale experiments was investigated. The single edge notch with a three-
point bending specimen was used to tests mode I fracture toughness (Fig. 1).  To determine the effect 
of crack geometry, the crack width of the specimen is defined as 1, 3, and 5 mm respectively, and the 
ratio of crack length to specimen width is defined as 0.3, 0.5, and 0.7 respectively. The specimens are 
prepared by laser cutting. Fracture toughness testing was performed on Lloyd universal testing 
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machine LD series (100 kN) at loading rates 0.1, 0.5, and 1.0 mm/min. The testing sequence was 
generated using a general full factorial experiment design with 3 replicates for each condition. After 
testing the mode I fracture toughness can be calculated according to Eq. (1) 

 

 
 

Fig. 1 Dimension of fracture toughness specimen 
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where IK  is the stress intensity factor that demonstrated fracture toughness of this study, P is the 
maximum load applied to specimen, W is the width of specimen, t is the thickness of specimen, 0a  is 
the initial crack length and IY  is the mode I fracture toughness geometry factors that depended on the 
ratio of crack length to specimen width ( 0a W ), the ratio of span length to specimen width ( S W ) 
and crack width (C) which can be calculated using finite element analysis (FEA) which at crack width 
1 mm are equal to (1.589, 2.090, 4.068), 3 mm are equal to (1.537, 1.997, 4.027), and 5 mm are equal 
to (1.409, 1.910, 3.968) (P.S.: number in the bracket was indicated at equal to 0.3, 0.5, and 0.7 
respectively).  

Prediction of mode I fracture toughness 
Traditional fracture toughness prediction 

Generally, when considering fracture toughness, it was found fracture toughness arises from the 
relationship of stress that occurred on the material. With this relationship, many researchers have 
come up with equations for predicting fracture toughness, known as fracture criteria. In this study, 
the widely used average strain energy density criterion (ASED) was employed to prediction fracture 
toughness. The ASED criterion was predicted based on the materials will be fractured when the 
average strain energy density around the crack tip over a control volume reaches critical strain energy 
( CW ) which depended on materials and notch properties. The prediction equation of ASED criterion 
was described according to Eq. (2) 
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where 1CW  and 2CW  are critical strain energy density obtained from mode I and II fracture 
respectively which can be calculated according to Eq. (3) 1W  and 2W  is mode I and II strain energy 
density generated from load applied to specimen respectively that can be calculated following Eq. (4) 
(When considering mode I , assumed 2 2CW W which obtained from mode II is equal to 0) 
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where tσ  is tensile strength of material (MPa) that equal to 67.05, 70.45, and 74.15 at each loading 
rate and E is the modulus of elasticity (GPa) that equal to 2.84, 2.95, and 3.13 at each loading rate. 
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where e1 is equal to 0.1186 [5], 1λ  is mode I Williams’ eigenvalues equal to 0.5, and 1CR  is mode I 
control volume radius[6].  

Artificial intelligence method 
Data preparation and model performance evaluation 

Data preparation was the process that affected to prediction performance of the artificial 
intelligence (AI) model. The data preparation was started by reducing the different scale of input 
factors with normalization technique to range 0 to 1. To avoid bias occurring in train and test dataset 
selection process, the K-Fold cross-validation method was employed for selection. The loading rate 
(R), crack width (C), and crack length ratio (a0/W) was selected as input factors of AI models, and 
fracture toughness (KI) was selected as output or target of models. All AI model was generated in 
MATLAB programming. The model performance evaluation for both traditional and AI models has 
employed the common performance metric in regression problems such as coefficient of 
determination (R2) and mean absolute percentage error (MAPE) which indicated the difference 
between prediction and actual values, both R2 and MAPE equation described at ref [7]. 

Generalized regression neural network (GRNN) 
The generalized regression neural network (GRNN) is one of the neural network models. The 

learning process of GRNN is a feedforward training type that belongs to the radial basis model. The 
architecture of GRNN was shown in Fig. 2 and brief was described as follows:  

 

 
Fig. 2 Architecture of generalized regression neural network (GRNN) 

 
Input layer: In this layer, the inputs data are introduced into the model learning process. The number 
of neurons in this layer is according to the dimension of the input vector. 
Pattern layer: Data of the input layer were passed into this layer and transformed by the Gaussian 
kernel function. The number of neurons in this layer is according to the number of the training data. 
Summation layer: The weight (Pi) was summarized in this layer. The SN is neurons that officiate the 
summation of weight and output of training data while SD is officiating the summation of weight only. 
Output layer: The prediction results of model (Y*) were generated in this layer which was calculated 
from the ratio of SN and SD from the previous layer. Additional information on GRNN can be found 
at ref. [4] 

Gaussian process regression (GPR) 
Gaussian processes regression (GPR) is a generic supervised learning method designed to solve small 
dataset problems. The GPR models are nonparametric covariance or kernel-based probabilistic 
models that combine prior process and sampled training data to infer posteriori processes as 
interpolation results and brief was described as follows:  
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Applied the Gaussian Processes method (GP) into the relationship function of input (x) and output 
y or f(x), the GP of  f(x) defines a priori over functions, which can be converted into a posteriori over 
functions once some data is obtained. The Gaussian process is indicated as follows: 
 

( , ') [( ( ) ( ))( ( ') ( ')) ]Tk x x E f x m x f x m x= − −   (5) 
 
where m(x) is the mean function that depicts the anticipated value of f(x) at the input x and  ( , ')k x x  
is the covariance function or kernel function of the measured confidence level for m(x). The prediction 
equation of GPR shown in Eq. (6)  
 

1 1( ) ( , )Tp y y G K K y K K K K∗ ∗ − ∗∗ ∗ − ∗= −   (6) 
 
where y∗  is the corresponding output of input x ∗ , G is the Gaussian distribution, 1K K y∗ −  is the mean 
of the Gaussian distribution, and 1 TK K K K∗∗ ∗ − ∗−  is the variance of the Gaussian distribution. Then 
y∗known as the prediction values  

Results and Discussion 
The fracture toughness affected by loading rate and crack geometry of PMMA were shown in the 

form of average values in Fig. 3(a) which result shows a tendency for fracture toughness to decrease 
as the loading rate increases. When considering the effect of the crack geometry, the same behavior 
is observed as the loading rate at which the fracture toughness decreases when the crack geometry, 
both the crack width and the crack length ratio are increase. Evidence of the effect of these three 
factors is evident when considering the Pareto chart of standardized effect obtained from ANOVA 
(Fig. 3(b)) 

 

 

 

(a) (b) 
 

Fig. 3 Fracture toughness results (a) average fracture toughness results for each condition (b) Pareto 
chart of standardized effects on KI at significant level 0.05 

 
The results of the predictions with the ASED criteria separated by loading rate are shown in Fig. 

4, it was found to be rather inaccurate compared to the experimental results. The ASED criteria had 
MAPE values is 20.20%, 15.33%, and 14.17% according to each loading rate. While compared to AI 
models (Fig. 5), it was found to have significantly higher predictive performance. The GRNN model 
had R2 and MAPE values equal to 0.904 and 4.40% respectively and the GPR model had R2 and 
MAPE values equal to 0.909 and 4.17% respectively. When considering MAPE values according to 
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Lewis's interpretation [8] that was found both AI models are high prediction performance (<10%) 
while the ASED criterion found a good or reasonable prediction (10%-50%). 

 

   
(a) Loading rate 0.1 mm/min (b) Loading rate 0.5 mm/min (c) Loading rate 1.0 mm/min 

 

Fig. 4 Prediction fracture toughness from ASED criterion at a various loading rate 
 

  
(a) Testing process (GRNN) (b) Testing process (GPR) 

 

Fig. 5 Prediction results of artificial intelligence model 

Conclusion 
The objective of this research was aim to prediction effect of loading rate and crack geometry on 

mode I fracture toughness of PMMA by generalized regression neural network (GRNN) model and 
Gaussian processes regression (GPR) model which not presented before. The results of the operation 
can be summarized as follows: 

1. The loading rate and crack geometry (crack width and crack length ratio) has affected to mode 
I fracture toughness of PMMA, and the loading rate has the lowest affected compared to crack 
geometry. 

2. The ASED criteria had inaccuracy in the case of the prediction effect of loading rate and crack 
geometry. 

3. The GRNN model and GPR model was high prediction performance that had R2 and MAPE 
values equal to 0.904, 4.40% and 0.909, 4.17% for each model respectively. 
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