
Forward-Backward Propagation to Identify the Maximum Specific 
Growth Rates of a Bioreactor 

BORSALI Salima1,a, 
1Automatic Laboratory, Department of Electrical Engineering University of Tlemcen, Algeria 

aborsali.salima@gmail.com 

Keywords: Estimation, Bioreactor, Interval arithmetic method, Forward backward technique. 

Abstract. In this article, we are interested in identifying the parameters of an aerobic bioprocess 
model used for wastewater treatment. In the field of biotechnology, various computer bugs caused 
by round­ ing errors can induce an error interval that is too wide during data acquisition. For this 
reason, we are testing a new identification method using a set method based on interval arithmetic. 
The process studied is the chemical transformation of ammoniacal nitrogen which takes place in 
two stages: Re­ action of nitrification­denitrification. The parameters chosen for the identification 
are the yields and the maximum growth rates. Initially, the study of observability by a differential 
algebraic method will simplify the study of the mathematical model. This nonlinear model is 
described by six differential equations. Subsequently, we apply a set method, in particular the 
propagation of constraints also called forwardbackward propagation, this technique allowed us to 
determine intervals containing the variable returns as well as the maximum specific growth rates 
defined from the Monod model which describes the operation of the bioreactor. This method also 
guarantees the result by rejecting all inconsistent values. 

Introduction 
In order to estimate the parameters of a bioreactor, we are interested in this study at a new identifi­ 
cation method. This choice is motivated for several reasons. The first is due to an important 
problem faced by the scientific community and which concerns the various computer bugs caused 
by rounding errors [1]. The other reasons for our motivation is to find solutions to the problems of 
convergence and of estimates caused by the errors of modeling and noises of measurements [2], 
therefore, one cannot rely only on conventional methods of identification. The set approach based 
on interval arithmetic is well suited in the biotechnology field because in these cases the error 
interval introduced during data acquisition is too wide as is also the case in biology, chemistry or 
medical sciences. In this context, a variable is represented by a set called the likelihood set or 
domain, supposed to contain the real value x. The objective is to identify the parameters of a 
bioreactor as part of an ammoniacal nitrogen nitrification process, chemical reaction observed 
during depollution of wastewater. The first models to describe such processes are those reported by 
the international Association on Water Pollution Re­ search and Control(IAWPRC) [3]. One of 
them is the activated sludge model [4] using Monod kinetics. It is a complete model describe by 
many parameters making it very complex and therefore identifi­ cation by statistical methods is 
difficult or even impossible. These models are also not suitable for online control. Other models can 
be considered for the online control of an activated sludge process, using models like ARMAX [5], 
fuzzy logic [6] and neural networks [7]. The last two methods allow easier handling of 
nonlinearities. The identification of the parameters of a bioreactor using genetic al­ gorithm are 
cited in [8]. The set techniques used in this study are an approach known for many years. The bases 
of these methods were established by R. Moore [9], then Neumaier [10] and Hansen [11]. There are 
applications in many fields for estimating uncertain parameters. This is the case in robotics for the 
identification of dynamic parameters [12, 13]. Due to the difficulties of acquiring measure­ 
ments,the use of interval arithmetic is not new in the field of biotechnology [14, 15]. First, we apply 
a differential algebraic method [16, 17],[18], in order to study the observability and identifiability of 
the model. Indeed, models of biotechnological processes are often described in terms of differential 
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algebraic equations which therefore lend themselves well to this approach. The article is organized 
as follows, section 2 describes the essentials of the algebraic approach, and it will be followed in 
section 3 by the basic definitions of interval arithmetic as well as the principle of constraint 
propagation. In section 4, we present the bioreactor model whose dynamic parameters we want to 
identify. The results of the simulation and the discussion are given in section 5 followed by a 
conclusion. 

The Algebraic Method 
The study of observability and identifiability problems using differential algebraic methods dates 
back to the early 1990s [19, 20],[21]. The principle of the method used in this article consists in 
verifying the observability of a latent variable x compared, for example, to two variables v and w, if 
each com­ ponent of x is solution of an algebraic equation not differential with coefficients 
dependent on v and w and a finite number of their time derivatives . In fact, to verify the 
observability of a variable x with respect to v and w of a system: 
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Then, for i = 1, 2 ,. . . we compute a characteristic set of all differential polynomials v, w, x, ξ … 
we compute a characteristic set of all differential polynomials with respect to a classification 

whose order {{v, w}, {x}, {ξ}} must be respected. This classification means that all the derivatives 
of v and w are less than x and all the derivatives of x are less than ξ. This characteristic set will be 
represented by a set E of differential polynomials, each directed by one and only one of the 
variables. We conclude that x is observable with respect to v and w if and only if, each component 
of it leads to a differential polynomial in E. To do this, a REDUCE package called astb (Diop S, 
2002) is used. 

Constraint Propagation 
Interval arithmetic 
An interval, denoted by [x], is a bounded and connected set of ℝ , which is defined by: 

            [x]=( x ,x )= { x ∈ R | x ≤ x ≤ x }                                         (2)          

The real numbers x and x are the lower and upper bounds of [x], respectively all intervals within 
R are denoted by 𝕀𝕀ℝ , basic mathematical operations are extended to intervals.  
Let [x] ∈ 𝕝𝕝ℝ, then, we define.  
Its lower bound: inf ([x]) = x   
Its upper bound: sup ([x]) =  x 

Its width: w ([x]) = x – x   ≥ 0                                                                                        (3)               

Its Middle: mid ([x]) =  x+ x 
2

 

Its radius: rad ([x] =  x− x 
2

 ≥ 0  
A box (or interval vector) [x] is a compact of Rn , defined by the Cartesian product of n  
intervals.Therefore, 

                                        [x] = [ x1,x1] × [ x2,x2]×,…, [ x𝑛𝑛,x𝑛𝑛] 

                            = [x1]× [x2]×,…,[xn]                                                                       (4)  
Elementary mathematical operations are extended to intervals. The result of an operation 

between two intervals of finite terminals is an interval obtained by working only on their bonds. 
Let [x], [y] ∈ 𝕀𝕀ℝ and ∘ ∈ {+, ­, *, /}, then     

                                            [x] ∘ [y] = {x ∘ y  /  x ∈  [x],  y ∈  [ y]   }                            (5)                 
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In practice, we use less abstract equations: 
                                             [x] + [y] = [ x + y , x + y ] 
                                              [x] − [y] = [ x ­ y , x ­ y ] 

             [x] * [y] = [min { x y ,x y , x y,  x y }, max { x y ,x y ,x y ,  x y }]                        (6) 
                                   [x] 2  = [min(x2, x2) , max (x2, x2) ] if 0 ∉ [x , x ] 
                                           = [0, max (x2, x2) ]       otherwise    

  The division is defined by: 

                                     1/[y]  = ∅                    if  [y] = [0, 0] 
                                               = [ 1/y, 1/y ]      if  0 ∉ [y]                                                                             
                                               = [ 1/y, ∞[         if    y = 0 et y > 0      
                                 [x] /[y] = [x] * (1/[y])     if   0 ∉ [y] 
 
In order to reduce an interval or block, bisection techniques are used. However, the result of 
operations between intervals is not minimal because of pessimism (Tarek Raissi, 2004) .Contraction 
techniques have been developed (Luc Jaulin, Michel Kieffer, Olivier Didrit, and Eric Walter, 2001), 
(Tarek Raissi, Nacim Ramdani, and Yves Candau ,2003) in order to reduce pavement without 
sometimes having to use bisections. So, a contractor 𝒞𝒞 is an operator who makes it possible to 
contract or reduce an initial search pavement [x] without bisection and keeping all the solutions, i.e. 
eliminating inconsistent values. Constraint propagation on intervals allows on a predefined domain 
of variables, a considerable reduction in the size of a box [x] without resorting to bisections. The 
contractor that we use in our study is based on the principle of projection constraints (Isabelle 
Braems, 2002).  
Consider a set 𝕊𝕊, let us note 𝒞𝒞s ([x]) containing the smallest pavement 𝕊𝕊 ∩ [x]. 𝒞𝒞s is called the 
contraction operator. This operator is able to replace a box [x] by a box 𝒞𝒞s ([x]) with lower size 
while preserving the entire of solution set. 
 A contractor must therefore verify the following two properties (Fig1): 

 

                       ∀ [x] ∈ 𝕀𝕀ℝn  �  
∀ [x]  ⊆  𝕏𝕏,𝒞𝒞s ([x]) ⊂ [x]      (contractance)  
∀ [x]  ⊆  𝕏𝕏,  [x] ∩ 𝕊𝕊 ⊂ 𝒞𝒞s ([x]) (correctness)                        (7) 

 

 
Fig. 1: Contraction of a set 

Application to the bioreactor 
In practice, modeling bacteria is difficult due to its living nature. Consequently,they are described 
by complex functions involving poorly known parameters. We focus on the interval approach, in 
order to represent the uncertainties that affect these parameters. For this application, a mathematical 
model is used to describe a biological wastewater treatment with activated­sludge process. 
Ammonia nitrogen is treated by nitrification­denitrification reaction, involving two populations of 
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V 

autotrophic bacteria. Nitrification is the biological oxidation of ammoniacal nitrogen, it occurs 
through two steps: First, nitratation by ammonium­oxidizing bacteria, Nitrosomonas (AOB) and 
second, nitritation by nitride­ oxidizing bacteria,Nitrobacter (NOB). 

Fig. 2: The two stages of nitrification 
The state of this bioreactor is described by six variables: the bacterial concentrations, called 

biomass and denoted X1 and X2, as well as the concentrations of substrate S1, S2 and S3, Sin is the 
concen­ tration of the incoming substrate. The above model represents the dynamic evolution of 
these state variables. The model represents the dynamic evolution of these state variables. 

 
         𝑆̇𝑆1 = D (Sin ­S1) ­ k1 μ1(s1 ) X1   

         𝑋̇𝑋1 = (μ1 (s1) ­ D) X1 
𝑆̇𝑆2 = k1 μ1 (s1) X1   ­ k2 μ2 (s2) X2 ­S2 D                                                                                        (8) 

         𝑋̇𝑋2= (μ2 (s2) ­D) X2                                                                                             
         𝑆̇𝑆3 = k2 μ2 (s2) X2 ­ S3 D   

 
with:   

μ1 (s1) = μmax1  
𝑆𝑆1

𝑆𝑆1+ 𝑘𝑘𝑘𝑘1
     and,       μ2 (s2) = μmax2  

𝑆𝑆2
𝑆𝑆2+𝑘𝑘𝑘𝑘2

                                                         (9)           

      
µ1(S1) and µ2(S2) are the biomass growth rates. They are modeled by Monod kinetics[26]. 

µmax1(S1) and µmax2(S2) are the maximum specific growth rates, k1 and k2 are the stoichiometric 
coefficients which represent the respective yields of biomasses X1 and X2, ks1 and ks2 are the 
half­saturation con­ stants for the growth corresponding to the cell affinity for the substrate of each 
bacterial population. D is the dilution rate, such that D = Qin , where Qin is the input flow of the 
bioreactor and V its volume. 

Results and Discussions 
The observability of the yields k1 and k2 of the system described by Equations (8) cited above is 
tested by calculating the characteristic set of the following set of differential polynomials. First, we 
simu­ lated the model with parameters and measurements taken from the literature [27] over a 
period of 220 days. The yields k1 and k2 are obtained by the algebraic method [28]: 
 
                                                           k1 = D(Sin−y3)− y3̇

Dy1+y1̇
  

                              k2 = D(Sin−y4−y3)−(y4+y3)̇̇

Dy2+y2̇
                                                        (10) 

 
In order to illustrate the propagation of constraints, we construct the directed acyclic 

graph(DAG) for k1 and k2 which are represented by Figure 3 
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Fig. 3: The directed acyclic graph (DAG) for k1 and k2 

We apply the forward­backward propagation after having developed the expressions (10) in 
primitive functions (see Appendix). For the simulations, we have chosen X1=0.975X; 
 X2= 0.035X and for the additive error due to disturbances and the modeling error, we chose e=0.01. 
The principle of forward­backward propagation is to select the primitive constraints to be used for 
the contractions according to an optimal order, in the sense of the size of the domains obtained at 
the end.  
All the intervals of ai are chosen ]­∞, + ∞[, k1 and k2 are initialized with [0, + ∞[ 
The intervals are obtained by simulation on Matlab, using the Intlab toolbox. 
 

       
 

Fig. 4: Yield k1 (right) , k2 (left) 
 

In Figure (4) are represented on the right the yield k1 and on the left the yield k2, in blue framing 
obtained by propagation of constraints, in red star model a priori We obtain the intervals for the 
yields: 
 
k1 = [0.6266, 1.3216] 
 
k2 = [0.0572, 10.75] 
 

Such as:                       μmax1= 
μ1 (S1+ ks1)

S1
     and    μmax2= 

μ2 (S2+ ks2)
S2
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We apply the same principle to determine interval for the maximum specific growth rates µmax1 and 
µmax2. The directed acyclic graph (DAG) are represented by figure 4 In the same way, all the 
intervals of the primitives constraints bi are chosen ] − ∞, +∞[, µmax1 and µmax2 are initialized with 
[0, +∞[ 

 

 
 

Fig. 5: DAG for µmax1 and µmax2 
 

In Figure (5) are represented on the right the the maximum specific growth rates µmax1 and on 
the left the maximum specific growth rates µmax2, in blue framing obtained by propagation of con­ 
straints,in red star model a priori We obtain the intervals for the maximum specific growth rates     

        
   

Fig. 6: The maximum specific growth rates µmax1 and µmax2 
 

µmax1 = [0.2486, 0.4045] 
 
µmax2 = [0.4009, 3.51] 
 

As a result, we have been able to associate with the yield parameters k1 and k2, as well as with 
maximum specific growth rates µmax1 and µmax2 the smallest intervals contain the a priori values 
obtained by the propagation of constraints 

Conclusion 
One of the difficulties in the study of biological or biotechnological systems is due to the 
experimental samples which can be counted in days. Therefore, the error interval may be too wide. 
The set methods based on interval arithmetic that we have already used are well suited in these 
areas. However, it has a drawback which concerns the problem of pessimism due to two phenomena 
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which can lead to an overestimation of the desired interval. There is a phenomenon of wrapping 
(wrapping effect) and of dependence or multi­occurrence because each variable is considered to be 
different. In this study, we tested this technique to identify the parameters of an aerobic bioprocess 
model for wastewater treatment. In order to avoid pessimism by studying a model with five 
equations, an algebraic method allowed us to determine simpler expressions for the yield k1 and k2 
then to apply the principle of propagation constraints. The Forward­backward propagation 
technique allowed us to find a minimum interval for the return k1 and k2 as well as for the maximum 
unobservable specific growth rates µmax1 and µmax2 The advantage of this method is that it allows to 
obtain an interval containing the real value by rejecting the inconsistent values. We can extend our 
method to the identification of half­saturation constants for the growth ks1 and ks2 unobservable 
parameters 

Appendix 

 
Fig. 7: Notations 

Forward propagation 
 
a1=Sin­ S1                                        b1= S1+Ks1                                                                                                                
a2=D.a1                                                                 b2= μmax1. S1 

a3=a2­ Ṡ1                                         μ1 =(b2 / b1) ∩ μ1 
a4=D.X1                                                                b3=S2+Ks2 

a5=a4+Ẋ1                                         b4= μmax2.S2                    
k1= (a3 / a5) ∩ k1                                           μ2= (b4 / b3) ∩ μ2 
a7=Sin­ S2; 
a8=a7­ S1; 
a9=D.a8; 
a10= Ṡ2+Ṡ1 
a11=a9­a10 
a12=D. X2; 
a13=a12+Ẋ2 
k2=(a11 / a13) ∩ k2 
 
Backward propagation 
 

Ẋ2 = (a13­a12) ∩ Ẋ2                                     b4= (μ2.b3) ∩ b4 

a12 = (a13 ­ Ẋ2) ∩ a12                                   b3= (b4/ μ2) ∩ b3 
a11= (a13.k2) ∩ a11                                                       μmax2= (b4 /S2) ∩ μmax2 
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a13= (a11 / k2) ∩ a13                                     S2= (b4 / μmax2) ∩ S2 

Ẋ2= (a13­a12) ∩ Ẋ2                                      S2= (b3­Ks2) ∩ S2 
X2= (a12 / D) ∩ X2                                      Ks2= (b3­S2) ∩ Ks2 
a9= (a11+a10) ∩ a9                                                     b2= (μ1.b1) ∩ b2 
a10= (a9 ­ a11) ∩ a10                                      b1= (b2 / μ1) ∩ b1 

Ṡ2= (a10 ­ Ṡ1) ∩ Ṡ2                                      μmax1= (b2 /S1) ∩ μmax1 
Ṡ1= (a10 ­ Ṡ2) ∩ Ṡ1                                      S1= (b2 / μmax1) ∩ S1    
a8= (a9/D) ∩ a8                                            Ks1= (b1­S1) ∩ Ks1 
a7= (a8+SS1) ∩ a7                                     S1= (b1­Ks1) ∩ S1 
S1= (a7 ­ a8) ∩ S1  
Sin= (a7+ S2) ∩ Sin 
S2= (Sin­a7) ∩ S2  
a3= (a5.k1) ∩ a3 
a5= (a3 / k1) ∩ a5  
a4= (a5 ­Ẋ1) ∩ a4  
Ẋ1=(a5­a4) ∩  Ẋ1  
X1=(a4 / D) ∩ X1  
a2=(a3+Ṡ1) ∩ a2 
Ṡ1=(a2­a3) ∩ Ṡ1  
a1=(a2 / D) ∩ a1  
Sin=(a+S1) ∩ Sin 
S1=(Sin­a1) ∩ S1 
 

 
 

Fig. 8: Simulink 
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