Three Dimensional Printing of Titanium for Bone Tissue Engineering Applications: A Preliminary Study

Abstract:

Article Preview

One of the main goals of bone tissue engineering is the development of scaffolds that mimic both functional and structural properties of native bone itself. This study describes the preliminary work carried out to assess the viability of using three dimensional printing (3DP) technology for the fabrication of porous titanium scaffolds with lowered modulus and improved biocompatibility. 3DP enables the manufacturing of three dimensional (3D) objects with a defined structure directly from a Computer Aided Design (CAD). The overall porosity of the 3D structures is contributed by the presence of both pores-by-process (PBP) and pores-by-design (PBD). This study mainly focuses on the PBP, which are formed during the sintering step as the result of the removal of the binding agent polyvinyl alcohol (PVA). Sintering temperatures of 1250oC, 1350oC and 1370oC were used during the fabrication process. Our results showed that by varying the binder percentage and the sintering temperature, pores with diameters in the range of approximately 17-24 μm could be reproducibly achieved. Other physical properties such as surface roughness, porosity and average pore size were also measured for all sample groups. Results from subsequent cell culture studies using adipose tissue-derived mesenchymal stem cells (ASCs) showed improved attachment, viability and proliferation for the 3DP titanium samples as compared to the two-dimensional (2D) dense titanium samples. Hence, based on our current preliminary studies, 3DP technology can potentially be used to fabricate customized, patient-specific metallic bone implants with lowered modulus. This can effectively help in prevention of stress-shielding, and enhancement of implant fixation in vivo. It is envisioned that an optimized combination of binder percentage and sintering temperature can result in the fabrication of scaffolds with the desired porosity and mechanical properties to fit the intended clinical application.

Info:

Pages:

101-115

DOI:

10.4028/www.scientific.net/JBBBE.21.101

Citation:

V. Guneta et al., "Three Dimensional Printing of Titanium for Bone Tissue Engineering Applications: A Preliminary Study", Journal of Biomimetics, Biomaterials and Biomedical Engineering, Vol. 21, pp. 101-115, 2014

Online since:

August 2014

Export:

Price:

$35.00

* - Corresponding Author

[1] G. Wei; P. X. Ma, Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering, Biomaterials. 19 (2004) 4749-4757.

DOI: 10.1016/j.biomaterials.2003.12.005

[2] A. Fox; L. C. Harrison, Innate immunity and graft rejection, Immunological Reviews. 1 (2000) 141-147.

[3] J. H. Zunino; M. Bengochea; J. Johnston; H. Deneo; S. Hernandez; C. Servetto; L. Taranto; G. Ordoqui, Immunologic and Osteogeneic Properties of Xenogeneic and Allogeneic Demineralized Bone Transplants, Cell Tissue Banking. 3 (2004) 141-148.

DOI: 10.1023/b:catb.0000046070.32132.34

[4] P. V. Giannoudis; H. Dinopoulos; E. Tsiridis, Bone substitutes: An update, Injury. 3, Supplement (2005) S20-S27.

DOI: 10.1016/j.injury.2005.07.029

[5] W. R. Moore; S. E. Graves; G. I. Bain, Synthetic bone graft substitutes, ANZ Journal of Surgery. 6 (2001) 354-361.

[6] L. L. Hench; J. M. Polak, Third-Generation Biomedical Materials, Science. 5557 (2002) 1014-1017.

[7] J. Roether; A. R. Boccaccini; L. Hench; V. Maquet; S. Gautier; R. Jérôme, Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass® for tissue engineering applications, Biomaterials. 18 (2002).

DOI: 10.1016/s0142-9612(02)00131-x

[8] C. Choong; S. Yuan; E. S. Thian; A. Oyane; J. Triffitt, Optimization of poly (ε‐caprolactone) surface properties for apatite formation and improved osteogenic stimulation, Journal of Biomedical Materials Research Part A. 2 (2012) 353-361.

DOI: 10.1002/jbm.a.33278

[9] G. E. Ryan; A. S. Pandit; D. P. Apatsidis, Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique, Biomaterials. 27 (2008) 3625-3635.

DOI: 10.1016/j.biomaterials.2008.05.032

[10] I. -H. Oh; N. Nomura; N. Masahashi; S. Hanada, Mechanical properties of porous titanium compacts prepared by powder sintering, Scripta Materialia. 12 (2003) 1197-1202.

DOI: 10.1016/j.scriptamat.2003.08.018

[11] P. K. Sullivan; J. F. Smith; A. A. Rozzelle, Cranio-Orbital Reconstruction: Safety and Image Quality of Metallic Implants on CT and MRI Scanning, Plastic and Reconstructive Surgery. 5 (1994) 589-596.

DOI: 10.1097/00006534-199410000-00004

[12] A. Gefen, Computational simulations of stress shielding and bone resorption around existing and computer-designed orthopaedic screws, Medical and Biological Engineering and Computing. 3 (2002) 311-322.

DOI: 10.1007/bf02344213

[13] M. Long; H. J. Rack, Titanium alloys in total joint replacement—a materials science perspective, Biomaterials. 18 (1998) 1621-1639.

DOI: 10.1016/s0142-9612(97)00146-4

[14] A. F. Schilling; S. Filke; S. Brink; H. Korbmacher; M. Amling; J. M. Rueger, Osteoclasts and biomaterials, European Journal of Trauma. 2 (2006) 107-113.

DOI: 10.1007/s00068-006-6043-1

[15] A. F. Schilling; W. Linhart; S. Filke; M. Gebauer; T. Schinke; J. M. Rueger; M. Amling, Resorbability of bone substitute biomaterials by human osteoclasts, Biomaterials. 18 (2004) 3963-3972.

DOI: 10.1016/j.biomaterials.2003.10.079

[16] D. M. Robertson; L. St Pierre; R. Chahal, Preliminary observations of bone ingrowth into porous materials, Journal of Biomedical Materials Research. 3 (1976) 335-344.

DOI: 10.1002/jbm.820100304

[17] A. I. Itälä; H. O. Ylänen; C. Ekholm; K. H. Karlsson; H. T. Aro, Pore diameter of more than 100 μm is not requisite for bone ingrowth in rabbits, Journal of Biomedical Materials Research. 6 (2001) 679-683.

DOI: 10.1002/jbm.1069

[18] S. Kujala; J. Ryhänen; A. Danilov; J. Tuukkanen, Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel–titanium bone graft substitute, Biomaterials. 25 (2003) 4691-4697.

DOI: 10.1016/s0142-9612(03)00359-4

[19] M. Shalabi; A. Gortemaker; M. Van't Hof; J. Jansen; N. Creugers, Implant surface roughness and bone healing: a systematic review, Journal of dental research. 6 (2006) 496-500.

DOI: 10.1177/154405910608500603

[20] D. D. Deligianni; N. D. Katsala; P. G. Koutsoukos; Y. F. Missirlis, Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength, Biomaterials. 1 (2000) 87-96.

DOI: 10.1016/s0142-9612(00)00174-5

[21] J. -P. St-Pierre; M. Gauthier; L. -P. Lefebvre; M. Tabrizian, Three-dimensional growth of differentiating MC3T3-E1 pre-osteoblasts on porous titanium scaffolds, Biomaterials. 35 (2005) 7319-7328.

DOI: 10.1016/j.biomaterials.2005.05.046

[22] Q. L. Loh; C. Choong, Three-dimensional Scaffolds for Tissue Engineering: Role of Porosity and Pore Size, Tissue Engineering. ja (2013).

[23] D. Dimitrov; K. Schreve; N. De Beer, Advances in three dimensional printing–state of the art and future perspectives, Rapid Prototyping Journal. 3 (2006) 136-147.

DOI: 10.1108/13552540610670717

[24] J. van den Dolder; E. Farber; P. H. M. Spauwen; J. A. Jansen, Bone tissue reconstruction using titanium fiber mesh combined with rat bone marrow stromal cells, Biomaterials. 10 (2003) 1745-1750.

DOI: 10.1016/s0142-9612(02)00537-9

[25] Y. -S. Hwang; J. Cho; F. Tay; J. Y. Heng; R. Ho; S. G. Kazarian; D. R. Williams; A. R. Boccaccini; J. M. Polak; A. Mantalaris, The use of murine embryonic stem cells, alginate encapsulation, and rotary microgravity bioreactor in bone tissue engineering, Biomaterials. 4 (2009).

DOI: 10.1016/j.biomaterials.2008.07.028

[26] K. Rezwan; Q. Chen; J. Blaker; A. R. Boccaccini, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomaterials. 18 (2006) 3413-3431.

DOI: 10.1016/j.biomaterials.2006.01.039

[27] A. R. Costa-Pinto; V. M. Correlo; P. C. Sol; M. Bhattacharya; P. Charbord; B. Delorme; R. L. Reis; N. M. Neves, Osteogenic differentiation of human bone marrow mesenchymal stem cells seeded on melt based chitosan scaffolds for bone tissue engineering applications, Biomacromolecules. 8 (2009).

DOI: 10.1021/bm9000102

[28] H. Petite; V. Viateau; W. Bensaid; A. Meunier; C. de Pollak; M. Bourguignon; K. Oudina; L. Sedel; G. Guillemin, Tissue-engineered bone regeneration, Nature biotechnology. 9 (2000) 959-963.

DOI: 10.1038/79449

[29] E. Kon; A. Muraglia; A. Corsi; P. Bianco; M. Marcacci; I. Martin; A. Boyde; I. Ruspantini; P. Chistolini; M. Rocca, Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical‐size defects of sheep long bones, Journal of biomedical materials research. 3 (2000).

DOI: 10.1002/(sici)1097-4636(20000305)49:3<328::aid-jbm5>3.0.co;2-q

[30] Q. Shang; Z. Wang; W. Liu; Y. Shi; L. Cui; Y. Cao, Tissue-engineered bone repair of sheep cranial defects with autologous bone marrow stromal cells, Journal of Craniofacial Surgery. 6 (2001) 586-593.

DOI: 10.1097/00001665-200111000-00017

[31] E. Garcia-Gareta; J. Hua; F. Rayan; G. W. Blunn, Stem cell engineered bone with calcium-phosphate coated porous titanium scaffold or silicon hydroxyapatite granules for revision total joint arthroplasty, Journal of materials science. Materials in medicine. (2014).

DOI: 10.1007/s10856-014-5170-z

[32] M. Pikuła; N. Marek-Trzonkowska; A. Wardowska; A. Renkielska; P. Trzonkowski, Adipose tissue-derived stem cells in clinical applications, Expert Opinion on Biological Therapy. 10 (2013) 1357-1370.

DOI: 10.1517/14712598.2013.823153

[33] G. Bassi; L. Pacelli; R. Carusone; J. Zanoncello; M. Krampera, Adipose-derived stromal cells (ASCs), Transfusion and Apheresis Science. 2 (2012) 193-198.

DOI: 10.1016/j.transci.2012.06.004

[34] F. E. Wiria; J. Y. M. Shyan; P. N. Lim; F. G. C. Wen; J. F. Yeo; T. Cao, Printing of Titanium implant prototype, Materials & Design. 0 (2010) S101-S105.

DOI: 10.1016/j.matdes.2009.12.050

[35] J. W. Gilman; D. L. VanderHart; T. Kashiwagi, Thermal decomposition chemistry of poly (vinyl alcohol), Fire and Polymers II: Materials and Test for Hazard Prevention ACS. (1994) 161.

DOI: 10.1021/bk-1995-0599.ch011

[36] S. S. da ROCHA; G. L. Adabo; G. E. P. Henriques; M. A. d. A. Nóbilo, Vickers hardness of cast commercially pure titanium and Ti-6Al-4V alloy submitted to heat treatments, Brazilian dental journal. 2 (2006) 126.

DOI: 10.1590/s0103-64402006000200008

[37] W. D. Callister; D. G. Rethwisch, Materials science and engineering: an introduction, (2007).

[38] S. P. Hoo; Q. L. Loh; Z. Yue; J. Fu; T. T. Y. Tan; C. Choong; P. P. Y. Chan, Preparation of a soft and interconnected macroporous hydroxypropyl cellulose methacrylate scaffold for adipose tissue engineering, Journal of Materials Chemistry B. 24 (2013).

DOI: 10.1039/c3tb00446e

[39] G. M. Xiong; S. Yuan; C. K. Tan; J. K. Wang; Y. Liu; T. T. Yang Tan; N. S. Tan; C. Choong, Endothelial cell thrombogenicity is reduced by ATRP-mediated grafting of gelatin onto PCL surfaces, Journal of Materials Chemistry B. 5 (2014) 485-493.

DOI: 10.1039/c3tb20760a

[40] F. He; B. Luo; S. Yuan; B. Liang; C. Choong; S. O. Pehkonen, PVDF film tethered with RGD-click-poly (glycidyl methacrylate) brushes by combination of direct surface-initiated ATRP and click chemistry for improved cytocompatibility, RSC Advances. 1 (2014).

DOI: 10.1039/c3ra44789h

[41] G. -G. Lee; B. -K. Kim, Effect of raw material characteristics on the carbothermal reduction of titanium dioxide, Materials Transactions. 10 (2003) 2145-2150.

DOI: 10.2320/matertrans.44.2145

[42] Q. Fu; E. Saiz; M. N. Rahaman; A. P. Tomsia, Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives, Materials Science and Engineering: C. 7 (2011) 1245-1256.

DOI: 10.1016/j.msec.2011.04.022

[43] C. P. Poole, Encyclopedic Dictionary of Condensed Matter Physics. Elsevier Science: (2004).

[44] D. M. Brunette, Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses, and Medical Applications. Springer: (2001).

[45] H. Castano-Izquierdo; J. Álvarez-Barreto; J. v. d. Dolder; J. A. Jansen; A. G. Mikos; V. I. Sikavitsas, Pre-culture period of mesenchymal stem cells in osteogenic media influences their in vivo bone forming potential, Journal of Biomedical Materials Research Part A. 1 (2007).

DOI: 10.1002/jbm.a.31082

[46] K. -H. Frosch; A. Drengk; P. Krause; V. Viereck; N. Miosge; C. Werner; D. Schild; E. K. Stürmer; K. M. Stürmer, Stem cell-coated titanium implants for the partial joint resurfacing of the knee, Biomaterials. 12 (2006) 2542-2549.

DOI: 10.1016/j.biomaterials.2005.11.034

[47] A. G. Mikos; J. S. Temenoff, Formation of highly porous biodegradable scaffolds for tissue engineering, Electronic Journal of Biotechnology. 2 (2000) 23-24.

[48] S. Hofmann; H. Hagenmüller; A. M. Koch; R. Müller; G. Vunjak-Novakovic; D. L. Kaplan; H. P. Merkle; L. Meinel, Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds, Biomaterials. 6 (2007).

DOI: 10.1016/j.biomaterials.2006.10.019

[49] L. Ponsonnet; V. Comte; A. Othmane; C. Lagneau; M. Charbonnier; M. Lissac; N. Jaffrezic, Effect of surface topography and chemistry on adhesion, orientation and growth of fibroblasts on nickel–titanium substrates, Materials Science and Engineering: C. 1–2 (2002).

DOI: 10.1016/s0928-4931(02)00097-8

[50] N. Hallab; K. Bundy; K. O'connor; R. Clark; R. Moses, Cell adhesion to biomaterials: correlations between surface charge, surface roughness, adsorbed protein, and cell morphology, Journal of long-term effects of medical implants. 3 (1995) 209.

[51] K. Anselme; P. Linez; M. Bigerelle; D. Le Maguer; A. Le Maguer; P. Hardouin; H. F. Hildebrand; A. Iost; J. M. Leroy, The relative influence of the topography and chemistry of TiAl6V4 surfaces on osteoblastic cell behaviour, Biomaterials. 15 (2000).

DOI: 10.1016/s0142-9612(00)00042-9

[52] T. P. Kunzler; T. Drobek; M. Schuler; N. D. Spencer, Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients, Biomaterials. 13 (2007) 2175-2182.

DOI: 10.1016/j.biomaterials.2007.01.019

[53] D. D. Deligianni; N. Katsala; S. Ladas; D. Sotiropoulou; J. Amedee; Y. F. Missirlis, Effect of surface roughness of the titanium alloy Ti–6Al–4V on human bone marrow cell response and on protein adsorption, Biomaterials. 11 (2001) 1241-1251.

DOI: 10.1016/s0142-9612(00)00274-x

[54] S. Schrepfer; T. Deuse; H. Reichenspurner; M. P. Fischbein; R. C. Robbins; M. P. Pelletier, Stem Cell Transplantation: The Lung Barrier, Transplantation Proceedings. 2 (2007) 573-576.

DOI: 10.1016/j.transproceed.2006.12.019

In order to see related information, you need to Login.