Detection of Novel GyrB Mutations Associated with Escherichia coli Clinical Isolates


Article Preview

The following study is investigating the different GyrB mutations associated with Escherichia coli clinical isolates. The study interrogates part of the ATPase binding site (a.a 132-199) as it covers most of the naturally occurring mutations in GyrB. The following results were obtained: for Arg-136 two isolates had mutations, the first is isolate-1 (Ala-136), and the second is isolate-5 (Cys-136). Gly-164 had no changes for all tested isolates. For Thr-165 only isolate-3 had a change to Ser-165. Accuracy of sequence translation was checked by sequencing both CFT073 and MG1655. The current study presents novel mutations in the GyrB24 subdomain of the gyrase enzyme. These new mutations showed normal enzyme activity (no reduction in ATPase functions) indicating that they might be a result of GyrB interaction with ATP analog molecules rather than antibacterial agents such as coumarins. Furthermore, our findings are supporting the idea that mutations in the GyrB24 would require synchronization with the efflux pumps to maintain antibiotic resistance against coumarins.





A. bin Thani "Detection of Novel GyrB Mutations Associated with Escherichia coli Clinical Isolates", Journal of Biomimetics, Biomaterials and Biomedical Engineering, Vol. 35, pp. 88-95, 2018

Online since:

January 2018





* - Corresponding Author

[1] F. Collin, S. Karkare, A. Maxwell, Exploiting bacterial DNA gyrase as a drug target: current state and perspectives, Appl Microbiol Biotechnol 92(3) (2011) 479-97.

[2] H.M. Al-Emran, A. Heisig, D. Dekker, Y. Adu-Sarkodie, L.M. Cruz Espinoza, U. Panzner, V. von Kalckreuth, F. Marks, S.E. Park, N. Sarpong, J. May, P. Heisig, Detection of a Novel gyrB Mutation Associated With Fluoroquinolone-Nonsusceptible Salmonella enterica serovar Typhimurium Isolated From a Bloodstream Infection in Ghana, Clin Infect Dis 62 Suppl 1 (2016).

[3] A. Alessiani, E. Di Giannatale, M. Perilli, C. Forcella, G. Amicosante, K. Zilli, Preliminary investigations into fluoroquinolone resistance in Escherichia coli strains resistant to nalidixic acid isolated from animal faeces, Vet Ital 45(4) (2009).

[4] L. Brino, A. Urzhumtsev, M. Mousli, C. Bronner, A. Mitschler, P. Oudet, D. Moras, Dimerization of Escherichia coli DNA-gyrase B provides a structural mechanism for activating the ATPase catalytic center, J Biol Chem 275(13) (2000) 9468-75.

[5] R.J. Lewis, O.M. Singh, C.V. Smith, T. Skarzynski, A. Maxwell, A.J. Wonacott, D.B. Wigley, The nature of inhibition of DNA gyrase by the coumarins and the cyclothialidines revealed by X-ray crystallography, EMBO J 15(6) (1996) 1412-20.

[6] C.V. Smith, A. Maxwell, Identification of a residue involved in transition-state stabilization in the ATPase reaction of DNA gyrase, Biochemistry 37(27) (1998) 9658-67.

[7] A. Contreras, A. Maxwell, gyrB mutations which confer coumarin resistance also affect DNA supercoiling and ATP hydrolysis by Escherichia coli DNA gyrase, Mol Microbiol 6(12) (1992) 1617-24.

[8] J.A. Ali, A.P. Jackson, A.J. Howells, A. Maxwell, The 43-kilodalton N-terminal fragment of the DNA gyrase B protein hydrolyzes ATP and binds coumarin drugs, Biochemistry 32 (1993) 2717-2724.

[9] C. Sissi, E. Vazquez, A. Chemello, L.A. Mitchenall, A. Maxwell, M. Palumbo, Mapping simocyclinone D8 interaction with DNA gyrase: evidence for a new binding site on GyrB, Antimicrob Agents Chemother 54(1) (2010) 213-20.

[10] H.F. Zhao, J. Boyd, N. Jolicoeur, S.H. Shen, A coumermycin/novobiocin-regulated gene expression system, Hum Gene Ther 14(17) (2003) 1619-29.

[11] F. Adachi, A. Yamamoto, K. Takakura, R. Kawahara, Occurrence of fluoroquinolones and fluoroquinolone-resistance genes in the aquatic environment, Sci Total Environ 444 (2013) 508-14.

[12] L.R. Arais, A.V. Barbosa, C.A. Carvalho, A.M. Cerqueira, Antimicrobial resistance, integron carriage, and gyrA and gyrB mutations in Pseudomonas aeruginosa isolated from dogs with otitis externa and pyoderma in Brazil, Vet Dermatol 27(2) (2016).

[13] E. Avalos, D. Catanzaro, A. Catanzaro, T. Ganiats, S. Brodine, J. Alcaraz, T. Rodwell, Frequency and geographic distribution of gyrA and gyrB mutations associated with fluoroquinolone resistance in clinical Mycobacterium tuberculosis isolates: a systematic review, PLoS One 10(3) (2015).

[14] M.A. Azam, J. Thathan, S. Jubie, Dual targeting DNA gyrase B (GyrB) and topoisomerse IV (ParE) inhibitors: A review, Bioorg Chem 62 (2015) 41-63.

[15] B. Giray, F. Ucar, S. Aydemir, Genotypic analysis of Escherichia coli strains that cause urosepsis in the Aegean region, Turkish Journal of Medical Sciences 46 (2016) 1518-1527.

[16] T. Adachi, K. Mizuuchi, R. Menzel, M. Gellert, DNA sequence and transcription of the region upstream of the E. coli gyrB gene, Nucleic Acids Res 12(16) (1984) 6389-95.

[17] T. Adachi, M. Mizuuchi, E.A. Robinson, E. Appella, M.H. O'Dea, M. Gellert, K. Mizuuchi, DNA sequence of the E. coli gyrB gene: application of a new sequencing strategy, Nucleic Acids Res 15(2) (1987) 771-84.

[18] V. Aleixandre, A. Urios, G. Herrera, M. Blanco, New Escherichia coli gyrA and gyrB mutations which have a graded effect on DNA supercoiling, Mol Gen Genet 219(1-2) (1989) 306-12.

[19] S. Bansal, V. Tandon, Contribution of mutations in DNA gyrase and topoisomerase IV genes to ciprofloxacin resistance in Escherichia coli clinical isolates, Int J Antimicrob Agents 37(3) (2011) 253-5.

[20] K. Gensberg, Y.F. Jin, L.J. Piddock, A novel gyrB mutation in a fluoroquinolone-resistant clinical isolate of Salmonella typhimurium, FEMS Microbiol Lett 132(1-2) (1995) 57-60.

[21] P. Heisig, Genetic evidence for a role of parC mutations in development of high-level fluoroquinolone resistance in Escherichia coli, Antimicrob Agents Chemother 40(4) (1996) 879-85.

[22] G.A. Jacoby, Mechanisms of resistance to quinolones, Clin Infect Dis 41 Suppl 2 (2005) S120-6.

[23] S. Ouabdesselam, D.C. Hooper, J. Tankovic, C.J. Soussy, Detection of gyrA and gyrB mutations in quinolone-resistant clinical isolates of Escherichia coli by single-strand conformational polymorphism analysis and determination of levels of resistance conferred by two different single gyrA mutations, Antimicrob Agents Chemother 39(8) (1995).

[24] G. Piatti, A. Mannini, M. Balistreri, A.M. Schito, Virulence factors in urinary Escherichia coli strains: phylogenetic background and quinolone and fluoroquinolone resistance, J Clin Microbiol 46(2) (2008) 480-7.

[25] D. Lafitte, V. Lamour, P.O. Tsvetkov, A.A. Makarov, M. Klich, P. Deprez, D. Moras, C. Briand, R. Gilli, DNA gyrase interaction with coumarin-based inhibitors: the role of the hydroxybenzoate isopentenyl moiety and the 5'-methyl group of the noviose, Biochemistry 41(23) (2002).

[26] A.K. Bhardwaj, P. Mohanty, Bacterial efflux pumps involved in multidrug resistance and their inhibitors: rejuvinating the antimicrobial chemotherapy, Recent Pat Antiinfect Drug Discov 7(1) (2012) 73-89.

[27] L.J. Piddock, Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria, Clin Microbiol Rev 19(2) (2006) 382-402.

[28] N. Baranova, H. Nikaido, The baeSR two-component regulatory system activates transcription of the yegMNOB (mdtABCD) transporter gene cluster in Escherichia coli and increases its resistance to novobiocin and deoxycholate, J Bacteriol 184(15) (2002).

[29] D. Du, Z. Wang, N.R. James, J.E. Voss, E. Klimont, T. Ohene-Agyei, H. Venter, W. Chiu, B.F. Luisi, Structure of the AcrAB-TolC multidrug efflux pump, Nature 509(7501) (2014) 512-5.

[30] A. Mazzariol, J. Zuliani, G. Cornaglia, G.M. Rossolini, R. Fontana, AcrAB Efflux System: Expression and Contribution to Fluoroquinolone Resistance in Klebsiella spp, Antimicrob Agents Chemother 46(12) (2002) 3984-6.

[31] S.K. Morgan-Linnell, L. Becnel Boyd, D. Steffen, L. Zechiedrich, Mechanisms accounting for fluoroquinolone resistance in Escherichia coli clinical isolates, Antimicrob Agents Chemother 53(1) (2009) 235-41.

[32] H. Okusu, D. Ma, H. Nikaido, AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants, J Bacteriol 178(1) (1996) 306-8.

[33] E. Pradel, J.M. Pagès, The AcrAB-TolC efflux pump contributes to multidrug resistance in the nosocomial pathogen Enterobacter aerogenes, Antimicrob Agents Chemother 46(8) (2002) 2640-3.

[34] J. Sun, Z. Deng, A. Yan, Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations, Biochem Biophys Res Commun 453(2) (2014) 254-67.

Fetching data from Crossref.
This may take some time to load.