Low Cycle Fatigue Study of AISI 316L Cardiovascular Stent for Two Different Designs


Article Preview

The main originality of this work consists in investigating low cycle fatigue of AISI 316L cardiovascular stents under hypertensive loading. For this purpose, two geometries of stents are expanded to various diameters and subjected to hypertensive blood pressure. Based on a combination between the fatigue parameter of Jiang-Sehitoglu and the relationship of Coffin-Manson, a numerical model for the prediction of the number of cycles to crack failure is developed. The stent is found to exhibit a fatigue life reduction with the increase of the expansion diameter due to ratchetting strain. In addition, the location of the failure is independent on the design. However, the U-shape strut permits a better distribution of pressure over the stent strut resulting in a longer fatigue life as compared to the Ω-shape.





M. Benhaddou et al., "Low Cycle Fatigue Study of AISI 316L Cardiovascular Stent for Two Different Designs", Journal of Biomimetics, Biomaterials and Biomedical Engineering, Vol. 37, pp. 55-73, 2018

Online since:

June 2018




* - Corresponding Author

[1] M. Benhaddou, M. Abbadi, M. Ghammouri, Numerical modeling of AISI 316L cardiovascular stent behaviour under blood pressure and restenosis loadings, Journal of Biomimetics, Biomaterials and Biomedical Engineering, 27 (2016) 60-76.

DOI: https://doi.org/10.4028/www.scientific.net/jbbbe.27.60

[2] A.H. Mahnken, CT imaging of coronary stents: Past, present, and future, ISRN Cardiology 2012 (2012) 1-12.

DOI: https://doi.org/10.5402/2012/139823

[3] M.R. Bennett, In-stent stenosis: Pathology and implications for the development of drug eluting stents, Heart 89 (2003) 218-224.

DOI: https://doi.org/10.1136/heart.89.2.218

[4] F. Auricchio, A. Constantinescu, G. Scalet, Fatigue of 316L stainless steel notched lm-size components, International Journal of Fatigue, 68 (2014) 231–247.

[5] C.A. Sweeney, P.E. McHugh, J.P. McGarry, S.B. Leen Micromechanical methodology for fatigue in cardiovascular stents, International Journal of Fatigue 44 (2012) 202–216.

DOI: https://doi.org/10.1016/j.ijfatigue.2012.04.022

[6] F. Philippe, A. Dibie,F. Larrazet, T. Meziane, T. Folliguet,F. Laborde, Drug eluting stents: from evidence based medicine to clinical practice, Annales de Cardiologie et d'Angéiologie 54, Issue 4, (2005), 201–211.

DOI: https://doi.org/10.1016/j.ancard.2005.05.016

[7] F. Shaikh, R. Maddikunta, M. Djelmami-Hani, J. Solis, S. Allaqaband, T. Bajwa, Stent fracture, an incidental finding or a significant marker of clinical in-stent restenosis? Catheterization and Cardiovascular Interventions 71 (2008) 614-618.

DOI: https://doi.org/10.1002/ccd.21371

[8] G. Sianos, S. Hofma, J.M.R. Ligthart, F. Saia, A. Hoye, P.A. Lemos, P.W. Serruys, Stent fracture and restenosis in the drug-eluting stent era,Catheterization and Cardiovascular Interventions 61 (2004) 111-116.

DOI: https://doi.org/10.1002/ccd.10709

[9] Winters G, Nutt M. Stainless steel for medical and surgical applications. ASMT International; (2003).

[10] F. Gervaso, C. Capelli, L. Petrini, S. Lattanzio, L. Di Virgilio, F. Migliavacca, On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method, Journal of Biomechanics 41 (2008) 1206–1212.

DOI: https://doi.org/10.1016/j.jbiomech.2008.01.027

[11] M.Azaouzi, A. Makradi, J. Petit, S. Belouettar, O. Polit, On the numerical investigation of cardiovascular balloon-expandable stent using finite element method, Computational Materials Science 79 (2013) 326-335.

DOI: https://doi.org/10.1016/j.commatsci.2013.05.043

[12] K.S. Matthys, J. Alastruey, J. Peiro, A.W. Khir, P. Segers, P.R. Verdonck, K.H. Parker, S.J. Sherwin, Pulse wave propagation in a model human arterial network: Assessment of 1-D numerical simulations against in vitro measurements, Journal of Biomechanics 40 (2007).

DOI: https://doi.org/10.1016/j.jbiomech.2007.05.027

[13] M.A. Costa, M. Sabate, I.P. Kay and P. de Feyter, (2000) Three-dimensional intravascular ultrasonic volumetric quantification of stent recoil and neointimal formation of two new generation tubular stents,, Am. J. Cardiol., Vol. 85, pp.135-139.

DOI: https://doi.org/10.1016/s0002-9149(99)00655-4

[14] S. Schievano,G. Parenzan,F. Migliavacca,L. Petrini,G. Dubini,P. Bonheeffer, Stent fracture in percutaneous pulmonary valve implantation: a finite element study, Journal of Biomechanics 39 (2006) 292-293.

DOI: https://doi.org/10.1016/s0021-9290(06)84134-5

[15] M. Azaouzi, A. Makradia, S. Belouettara, Fatigue life prediction of cardiovascular stent using finite element methodComputer Methods in Biomechanics and Biomedical Engineering, 2012;15(S1):93–5.

DOI: https://doi.org/10.1080/10255842.2012.713675

[16] J. Goodman, Mechanics applied to engineering, Longmans, Greens and Company, London (1914).

[17] O. Barrera, A. Makradi, M. Abbadi, M. Azaouzi, S. Belouettar, On high-cycle fatigue of 316L stents, Comput Methods Biomech Biomed Eng 2012;0:1–12.

DOI: https://doi.org/10.1080/10255842.2012.677442

[18] K. Dang Van, Macro-micro approach in high-cycle multiaxial fatigue. In: D.L. McDowell, R. Ellis, editors. Advances in multi-axial fatigue. ASTM, (1993) 120-130.

DOI: https://doi.org/10.1520/stp24799s

[19] C.A. Sweeney, B. O'Brien, P.E. McHugh, S.B. LeenExperimental characterisation for micromechanical modelling of CoCr stent fatigue, Biomaterials 35 (2014) 36-48.

DOI: https://doi.org/10.1016/j.biomaterials.2013.09.087

[20] J. Lemaître, JL.Chaboche. Mechanics of solid materials. Cambridge:Cambridge University Press; 1990. p.161–241.

[21] H.Sehitoglu, Y. Jiang, Fatigue and stress analyses of rolling contact.Technical Report, Materials Engineering-Mechanical Behavior, College of Engineering, University of Illinois at Urbana-Champaign (1992).

[22] Y.Jiang, H. Sehitoglu, Rolling contact stress analysis with the application of a new plasticity model. Wear 1996;191:35–44.

DOI: https://doi.org/10.1016/0043-1648(95)06663-2

[23] Y.Jiang, H. Sehitoglu. A model for rolling contact failure. Wear 1999;224:38–49.

[24] Lê M-B. Propagation de fissure par fatigue en presence d'une pré-déformation et de contraintes résiduelles, Ph.D thesis, Ecole Polytechnique; (2013).

[25] KC.Liu. A method based on virtual strain–energy parameters for multiaxial fatigue life prediction. In: McDowell DL, Ellis R, editors. Advances in multiaxial fatigue, ASTM STP 1191. Philadelphia, PA, USA: American Society for Testing and Materials; 1993. p.67.

DOI: https://doi.org/10.1520/stp24796s

[26] A.Varvani-Farahani. A new energy–critical plane parameter for fatigue life assessment of various metallic materials subjected to inphase and out-of-phase multiaxial fatigue loading conditions. Int J Fatigue 2000;22:295–305.

DOI: https://doi.org/10.1016/s0142-1123(00)00002-5

[27] A. Fatemi, DF. Socie. A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue Fract Eng Mater Struct 1988;11:149–65.

DOI: https://doi.org/10.1111/j.1460-2695.1988.tb01169.x

[28] MW.Brown, KJ. Miller. A theory for fatigue failure under multiaxial stress–strain conditions. Proc Inst Mech Eng 1973;187:745–55.

[29] KN. Smith, P. Watson, TH. Topper. A stress–strain function for the fatigue of metals. J Mater 1970;5:767–78.

[30] DF. Socie. Multiaxial fatigue damage models. ASME J Eng Mater Technol 1987;109:292–8.

[31] JW. Ringsberg, M. Loo-Morrey, BL. Josefson, A. Kapoor, JH. Beynon. Prediction of fatigue crack initiation for rolling contact fatigue. Int J Fatigue 2000;22:205–15.

DOI: https://doi.org/10.1016/s0142-1123(99)00125-5

[32] AF. Bower. Cyclic hardening properties of hard-drawn copper and rail steel. J Mech Phys Solids 1989;37:455–70.

DOI: https://doi.org/10.1016/0022-5096(89)90024-0

[33] Y, Jiang, H. Sehitoglu. Modeling of cyclic ratchetting plasticity, Part II: comparison of model simulations with experiments. Trans ASME, J Appl Mech 1996;63:726–33.

DOI: https://doi.org/10.1115/1.2823356

[34] JA. Bannantine, JJ. Comer, JL. Handrock. Fundamentals of metal fatigue analysis. Englewood Cliffs (NJ, USA): Prentice Hall; (1990).

[35] McDowell DL, Dunne FPE. Microstructure-sensitive computational modeling of fatigue crack formation. Int J Fatigue 2010;32:1521-1542.

DOI: https://doi.org/10.1016/j.ijfatigue.2010.01.003

[36] S. Weiss, A. Meissner, A. Fischer. Microstructural changes within similar coronary stents produced from two different austenitic steels. Journal of the Mechanical Behaviour of Biomedical Materials. 2009;2:210-216.

DOI: https://doi.org/10.1016/j.jmbbm.2008.12.008

[37] E. Donnelly. Geometry effect in the fatigue behavior of microscale 316L stainless steel specimens, Ph.D. thesis, National University of Irland, Galway. (2012).

[38] Wiersma S, Dolan F, Taylor D. Fatigue and fracture in materials used for microscale biomedical components. Bio-med Mater Eng 2006;16(2):137–46.

[39] Wiersma S, Taylor D. Fatigue of materials used in microscopic components.Fatigue Fract Eng Mater Struct 2005;28(12):1153–60.

[40] Kanchanomai C., Miyashita Y., Mutoh, Y., 2002, Low Cycle Fatigue Behavior and Mechanisms of a Eutectic Sn–Pb Solder 63Sn/37Pb, Inter. Journal of Fatigue 24, p.67.

DOI: https://doi.org/10.1016/s0142-1123(01)00186-4

[41] G. Kang, Ratchetting: Recent progresses in phenomenon observation, constitutive modeling and application Int.J.Fatigue30(2008)1448–1472.

DOI: https://doi.org/10.1016/j.ijfatigue.2007.10.002

[42] G. Chen, S.C. Shan, X. Chen, H. Yuan, Computational Materials Science 46 (2009) 572–578.

[43] Grogan JA, Leen SB, McHugh PE. Influence of statistical size effects on the plastic deformation of coronary stents. J Mech Behav Biomed Mater 2013;20: 61e76.