Recognition of Coronary Atherosclerotic Plaque Tissue on Intravascular Ultrasound Images by Using Misclassification Sensitive Training of Discriminative Restricted Boltzmann Machine

Abstract:

Article Preview

Coronary atherosclerotic plaque has been extensively studied in pathological research. Improving the evaluation of vulnerable rupture is important to prevent acute heart failure. Intravascular ultrasound (IVUS) method is one of techniques to acquire information about atherosclerotic plaque, which is backscattered ultrasound signal sensed by IVUS transducer. The vessel structure and tissue components are then characterized in relation to the acquired signals. In this study, eight human coronary vessel sections are involved, and we use discriminative restricted Boltzmann machine (RBM) to classify coronary tissues as a target classifier. The quantization domain of IVUS signals are used to extract binary features for adapting Gaussian model of RBM. In addition, we propose a misclassification sensitive training of disRBM to deal with the class imbalances. The results are compared to the conventional integrated backscattered IVUS method (IB-IVUS) and the cost sensitive neural network for the same tasks.

Info:

Pages:

85-93

Citation:

K. T. Nguyen et al., "Recognition of Coronary Atherosclerotic Plaque Tissue on Intravascular Ultrasound Images by Using Misclassification Sensitive Training of Discriminative Restricted Boltzmann Machine", Journal of Biomimetics, Biomaterials and Biomedical Engineering, Vol. 37, pp. 85-93, 2018

Online since:

June 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] T. Azetsu, E. Uchino, S. Furukawa, N. Suetake, T. Hiro, M. Matsuzaki, Tissue characterisation of coronary plaques using sparse feature vectors, Elec. Lett. 46 (2010) 484-486.

DOI: https://doi.org/10.1049/el.2010.3454

[2] S. G. Carlier, G. S. Mintz, G. W. Stone, Imaging of atherosclerotic plaque using radiofrequency ultrasound signal processing, J. Nucl. Card. 13 (2006) 831-840.

DOI: https://doi.org/10.1016/j.nuclcard.2006.10.013

[3] N. V. Chawla, N. Japkowicz, A. Kotcz, Special issue on learning from imbalanced data sets, ACM Sigkdd Explorations Newsletter 6 (2004) 1-6.

DOI: https://doi.org/10.1145/1007730.1007733

[4] F. Ciompi, C. Gatta, O. Pujol, O. Rodrıguez-Leor, J. M. Ferré, P. Radeva, Reconstruction and analysis of intravascular ultrasound sequences, Recent Ad. Biomed. Sig. Process. 223 (2011) 231-250.

DOI: https://doi.org/10.2174/978160805218911101010231

[5] H. He, E. A. Garcia, Learning from imbalanced data, IEEE Trans. Knowl. Data Eng. 21 (2009) 1263-1284.

DOI: https://doi.org/10.1109/tkde.2008.239

[6] G. E. Hinton, A practical guide to training restricted boltzmann machines, in: NN: Tricks of the Trade, Springer, 2012, pp.599-619.

[7] A. Katouzian, S. Sathyanarayana, B. Baseri, E. E. Konofagou, S. G. Carlier, Challenges in atherosclerotic plaque characterization with intravascular ultrasound (IVUS): from data collection to classification, IEEE Trans. Inf. Tech. Biomed. 12 (2008).

DOI: https://doi.org/10.1109/titb.2007.912352

[8] M. Kawasaki, B. E. Bouma, J. Bressner, et al., Diagnostic accuracy of optical coherence tomography and integrated backscatter intravascular ultrasound images for tissue characterization of human coronary plaques, J. Am. Coll. Cardiol. 48 (2006).

DOI: https://doi.org/10.1016/j.jacc.2006.02.062

[9] N. T. Kuong, E. Uchino, N. Suetake, IVUS tissue characterization in time-frequency domain using discriminative restricted Boltzmann machines, in: Proc. Int. Workshop Nonlin. Circuit Signal Processing, RISP, Japan, 2017, pp.405-408.

[10] N. T. Kuong, E. Uchino, N. Suetake, IVUS tissue characterization of coronary plaque by classification restricted Boltzmann machine, J. Adv. Comput. Intell. Intell. Inf. 21 (2017) 67-73.

DOI: https://doi.org/10.20965/jaciii.2017.p0067

[11] H. Larochelle, M. Mandel, R. Pascanu, Y. Bengio, Learning algorithms for the classification restricted boltzmann machine, J. Mach. Learn. Res. 13 (2012) 643-669.

[12] A. Murashige, T. Hiro, T. Fujii, et al., Detection of lipid-laden atherosclerotic plaque by wavelet analysis of radiofrequency intravascular ultrasound signals, J. Am. Coll. Cardiol. 45 (2005) 1954- (1960).

DOI: https://doi.org/10.1016/j.jacc.2004.10.080

[13] A. Nair, B. D. Kuban, E. M. Tuzcu, P. Schoenhagen, S. E. Nissen, D. G. Vince, Coronary plaque classification with intravascular ultrasound radiofrequency data analysis, Circulation 106 (2002) 2200-2206.

DOI: https://doi.org/10.1161/01.cir.0000035654.18341.5e

[14] R. Salakhutdinov, G. Hinton, Deep boltzmann machines, in: AI and Statistics. 2009, pp.448-455.

[15] K. Sano, M. Kawasaki, Y. Ishihara, et al., Assessment of vulnerable plaques causing acute coronary syndrome using integrated backscatter intravascular ultrasound, J. Am. Coll. Cardiol. 47 (2006) 734-741.

DOI: https://doi.org/10.1016/j.jacc.2005.09.061

[16] Y. Sun, A. K. Wong, M. S. Kamel, Classification of imbalanced data: A review, Int. J. Pattern Recognit. Artif. Intell. 23 (2009) 687-719.

[17] E. Uchino, T. Koga, H. Misawa, N. Suetake, Tissue characterization of coronary plaque by kNN classifier with fractal-based features of IVUS RF-signal, J. Intell. Manuf. 25 (2014) 973-982.

DOI: https://doi.org/10.1007/s10845-013-0793-3

[18] A. C. Wal van der, A. E. Becker, Atherosclerotic plaque rupture-pathologic basis of plaque stability and instability, Cardiol. Res. 41 (1999) 334-344.

DOI: https://doi.org/10.1016/s0008-6363(98)00276-4

[19] Z. H. Zhou, X. Y. Liu, Training cost-sensitive neural networks with methods addressing the class imbalance problem, IEEE Trans. Knowl. Data Eng. 18 (2006) 63-77.

DOI: https://doi.org/10.1109/tkde.2006.17

[20] J. Zhu, H. Zou, S. Rosset, T. Hastie, Multi-class adaboost, Stat. Interface 2 (2009) 349-360.

DOI: https://doi.org/10.4310/sii.2009.v2.n3.a8