A Brief Review of the Modelling of the Time Dependent Mechanical Properties of Tissue Engineering Scaffolds

Abstract:

Article Preview

The functionality of tissue scaffolds in vivo plays a critical role in the treatment process. Due to the time dependent nature of the mechanical properties of the constituent phases of the scaffold, a wide range of mechanical property histories may be observed during the treatment process, possibly influencing outcomes. The critical nature of the mechanical properties in load bearing applications indicates a need for the simultaneous modelling of both scaffold degradation and tissue regeneration with time, and the resulting effective properties of the tissue engineering construct. To this end, a review of the literature is conducted to identify the various existing approaches to modelling scaffold degradation, tissue behavior, and the dependency of the two processes on one another.

Info:

Pages:

19-33

Citation:

N.K. Bawolin et al., "A Brief Review of the Modelling of the Time Dependent Mechanical Properties of Tissue Engineering Scaffolds", Journal of Biomimetics, Biomaterials and Tissue Engineering, Vol. 6, pp. 19-33, 2010

Online since:

September 2010

Export:

Price:

$38.00

[1] J. Milan, J. Planell, D. Lacroix, Biomaterials, Vol. 30 (2009), p.4219.

[2] Z. Fang et al.: ABBI, Vol. 2(1) (2005) p.17.

[3] Z. Fang, B. Starly, W. Sun, Computer-Aided Design, Vol. 37 (2005), p.65.

[4] H. Berger et al.: Materials Science and Engineering A, Vol. 412 (2005), p.53.

[5] S. Nasser, M. Hori: Micromechanics: Overall properties of heterogeneous materials, Elsevier, North Holland (1999).

[6] C. Wilson, L. Bonassar, S. Kohles, Archives of Biochemistry and Biophysics, Vol. 408 (2002), p.246.

[7] Y. Mohammadi, E. Jabbari, Macromol. Theory Simul. Vol. 15 (2006), p.643.

[8] Y. Wang et al.: Biomaterials, Vol. 30 (2009) p.423.

[9] X. Han, J. Pan, Biomaterials, Vol. 30 (2009), p.423.

[10] M. Starink, Journal of Materials Science, Vol. 36 (2001), p.4433.

[11] J. Kalnin, E. Kotomin, J. Maier, Journal of Physics and Chemistry of Solids, Vol. 63 Issue 3 (2002), p.449.

[12] Y. Wang et al.: Journal of the Mechanical Behavior of Biomedical Materials, In Press, (2009).

[13] P. Arosio et al.: Polymer International, Vol. 57 (2008), p.912.

[14] A. Anderson, M. Chaplain, Bulletin of Mathematical Biology, Vol. 60 (1998), p.857.

[15] D. Kelly, P. Prendergast, Journal of Biomechanics, Vol. 38 (2005), p.1413.

[16] S. Checa, P. Prendergast: Annals of Biomedical Engineering, Vol. 37 No. 1 (2009), p.129.

[17] T. Adachi et al.: Biomaterials, Vol. 27 (2006), p.3964.

[18] J. A. Sanz-Herrera, J. M. Garcia-Aznar, M. Doblare: Computational Methods Applied to Mechanical Engineering, Vol. 197 (2008), p.3092.

[19] L. Freed, G. Vunjak-Novakovic: Advanced Drug Delivery Reviews, Vol. 33 (1998), p.15.

[20] G. Vunjak-Novakovic et al.: Journal of Orthopedic Research Vol. 17 (1999), p.130.

[21] B. Harley et al.: Biophysical Journal Vol. 95 (2008), p.4013.

[22] K. Thurecht, D. Hill, A. Whittaker: Macromol. Chem. Phys. Vol. 207 (2006), p.1539.

[23] J. Sinha, M. Friswell: Nuclear Engineering and Design Vol. 223 (2003), p.11.