A Brief Review of the Modelling of the Time Dependent Mechanical Properties of Tissue Engineering Scaffolds


Article Preview

The functionality of tissue scaffolds in vivo plays a critical role in the treatment process. Due to the time dependent nature of the mechanical properties of the constituent phases of the scaffold, a wide range of mechanical property histories may be observed during the treatment process, possibly influencing outcomes. The critical nature of the mechanical properties in load bearing applications indicates a need for the simultaneous modelling of both scaffold degradation and tissue regeneration with time, and the resulting effective properties of the tissue engineering construct. To this end, a review of the literature is conducted to identify the various existing approaches to modelling scaffold degradation, tissue behavior, and the dependency of the two processes on one another.





N.K. Bawolin et al., "A Brief Review of the Modelling of the Time Dependent Mechanical Properties of Tissue Engineering Scaffolds", Journal of Biomimetics, Biomaterials and Tissue Engineering, Vol. 6, pp. 19-33, 2010

Online since:

September 2010




[1] J. Milan, J. Planell, D. Lacroix, Biomaterials, Vol. 30 (2009), p.4219.

[2] Z. Fang et al.: ABBI, Vol. 2(1) (2005) p.17.

[3] Z. Fang, B. Starly, W. Sun, Computer-Aided Design, Vol. 37 (2005), p.65.

[4] H. Berger et al.: Materials Science and Engineering A, Vol. 412 (2005), p.53.

[5] S. Nasser, M. Hori: Micromechanics: Overall properties of heterogeneous materials, Elsevier, North Holland (1999).

[6] C. Wilson, L. Bonassar, S. Kohles, Archives of Biochemistry and Biophysics, Vol. 408 (2002), p.246.

[7] Y. Mohammadi, E. Jabbari, Macromol. Theory Simul. Vol. 15 (2006), p.643.

[8] Y. Wang et al.: Biomaterials, Vol. 30 (2009) p.423.

[9] X. Han, J. Pan, Biomaterials, Vol. 30 (2009), p.423.

[10] M. Starink, Journal of Materials Science, Vol. 36 (2001), p.4433.

[11] J. Kalnin, E. Kotomin, J. Maier, Journal of Physics and Chemistry of Solids, Vol. 63 Issue 3 (2002), p.449.

[12] Y. Wang et al.: Journal of the Mechanical Behavior of Biomedical Materials, In Press, (2009).

[13] P. Arosio et al.: Polymer International, Vol. 57 (2008), p.912.

[14] A. Anderson, M. Chaplain, Bulletin of Mathematical Biology, Vol. 60 (1998), p.857.

[15] D. Kelly, P. Prendergast, Journal of Biomechanics, Vol. 38 (2005), p.1413.

[16] S. Checa, P. Prendergast: Annals of Biomedical Engineering, Vol. 37 No. 1 (2009), p.129.

[17] T. Adachi et al.: Biomaterials, Vol. 27 (2006), p.3964.

[18] J. A. Sanz-Herrera, J. M. Garcia-Aznar, M. Doblare: Computational Methods Applied to Mechanical Engineering, Vol. 197 (2008), p.3092.

[19] L. Freed, G. Vunjak-Novakovic: Advanced Drug Delivery Reviews, Vol. 33 (1998), p.15.

[20] G. Vunjak-Novakovic et al.: Journal of Orthopedic Research Vol. 17 (1999), p.130.

[21] B. Harley et al.: Biophysical Journal Vol. 95 (2008), p.4013.

[22] K. Thurecht, D. Hill, A. Whittaker: Macromol. Chem. Phys. Vol. 207 (2006), p.1539.

[23] J. Sinha, M. Friswell: Nuclear Engineering and Design Vol. 223 (2003), p.11.

Fetching data from Crossref.
This may take some time to load.