The Effect of Controlled Melt-Solidification on the Strain Rate Sensitivity of a Squeeze-Cast Hybrid-Reinforced Aluminum AA 6061 Matrix Composite

Abstract:

Article Preview

A framework based on the relationship between variations in cooling rates and volume fraction of reinforcements during solidification processing to enhance the deformation behavior of aluminum alloy AA6061 matrix composite produced with a hybrid system of reinforcements is investigated in this study. The aluminum matrix composite with 5 %, 10 % and 20 % volume fraction of reinforcements (Al2O3-SiC) was synthesized by infiltrating molten aluminum AA 6061 at a pouring temperature of 740 °C into prefabricated preforms of reinforcements at a pressure of 80 MPa, die preheat temperature of 300 °C and pressure holding time of 15 s using the squeeze casting method. By employing water jet spraying at the rate of 0.1, 0.2 and 0.3 kg/s and taking measurements using a K-type thermocouple, cooling rates were obtained in correspondence with varying volume fractions of reinforcements. The developed composites were sectioned and microstructural features were examined by optical microscopy. Tensile testing was conducted according to ASTM B557 standard using an MTS testing machine. It was observed that cooling rates decreased as the volume fraction of reinforcements was increased and the cooling time also increased accordingly during this process. With respect to deformation behavior, higher cooling rates are associated with an improvement in mechanical properties at 5 % and 10 % additions of hybrid reinforcement particles but this effect diminishes as the volume fraction of reinforcements was increased to 20 %. Also, the strain rate sensitivity (SRS) exponent increased considerably with strain rates and volume fraction of reinforcements, but the tensile elongation values decreased with increasing volume fraction of reinforcements; and the variations in these properties were most significant for samples containing 20% volume fraction of hybrid reinforcements.From the foregoing, it follows that an experimentally-determined optimal solidification range is critical to the enhancement of deformation parameters as the volume fraction of reinforcements is varied in a squeeze casting process.

Info:

Pages:

1-16

Citation:

B.O. Malomo et al., "The Effect of Controlled Melt-Solidification on the Strain Rate Sensitivity of a Squeeze-Cast Hybrid-Reinforced Aluminum AA 6061 Matrix Composite", International Journal of Engineering Research in Africa, Vol. 16, pp. 1-16, 2015

Online since:

June 2015

Export:

Price:

$38.00

* - Corresponding Author

[1] B. Su, H. G. Yan, G. Chen, J. L. Shi, J. H. Chen and P. L. Zeng, Study on the preparation of theSiCp/Al-20Si-3Cu functionally graded material using spray deposition, Materials Science & Engineering A, 527 (2010) 660–665.

DOI: https://doi.org/10.1016/j.msea.2010.06.090

[2] S. Reihani, Processing of squeeze cast Al 6061-30 vol% SiC composites and their characterization, Materials and Design 27 (2006) 216–22.

DOI: https://doi.org/10.1016/j.matdes.2004.10.016

[3] D. Bozic, B. Dimcic, O. Dimcic, J. Stasic and V. Rajkovic, Influence of SiC particles distribution on mechanical properties and fracture of DRA alloys. Materials and Design 31 (2010) 134 –141.

DOI: https://doi.org/10.1016/j.matdes.2009.06.047

[4] P. Michael, D. Cicco, X.C. Li and T. Lih-Sheng, Semi-solid casting (SSC) of zinc alloy nanocomposites, Materials Processing Technology 209 (2009) 5881–5.

DOI: https://doi.org/10.1016/j.jmatprotec.2009.07.001

[5] D. B. Miracle, Metal matrix composites - From science to technological significance. Composites Science &Technology 65 (2005) 2526–40.

DOI: https://doi.org/10.1016/j.compscitech.2005.05.027

[6] S. E. Mohammad, F. Karimzadeh and M. H. Enayati, Fabrication of aluminum matrix hybrid nanocomposite by mechanical milling. International Journal of Modern Physics 23 (2009) 4825–32.

DOI: https://doi.org/10.1142/s0217979209053412

[7] M. Sameezadeh, M. Emamy and H. Farhangi, Effects of particulate reinforcement and heat treatment on the hardness and wear properties of AA 2024-MoSi2 nanocomposites, Materials and Design 32 (2011) 2157–2164.

DOI: https://doi.org/10.1016/j.matdes.2010.11.037

[8] X. Wang, K. Wu, W. Huang, H. Zhang, M. Zheng, and D. Peng , Study on fracture behaviour of particulate reinforced magnesium matrix composite using in situ SEM. Composite Science Technology 67 (2007) 2253-60.

DOI: https://doi.org/10.1016/j.compscitech.2007.01.022

[9] Y. Yang, J. Lan and X. C. Li, Study on bulk aluminum matrix nanocomposite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Materials Science and Engineering A 380 (2004) 373–8.

DOI: https://doi.org/10.1016/j.msea.2004.03.073

[10] A. Mazahery, H. Abdizadeh, H.R. Baharvandi, Development of high-performance A356/nano- Al2O3 composites, Materials Science and Engineering A 518 (2009) 61–4.

DOI: https://doi.org/10.1016/j.msea.2009.04.014

[11] M. Salehi, M. Saadatmand, and J. Mohandesi, J, Optimization of process parameters for producing AA6061/SiC nanocomposites by friction stir processing, Trans. Nonferrous Met. Soc. China 22 (2012) 10551063.

DOI: https://doi.org/10.1016/s1003-6326(11)61283-1

[12] H. Hie, L. Zhen, and T. Imai, Strain rate sensitivity of a high strain rate superplastic TiNp/2014 Al composite, material processing technology 210 (2010) 734-740.

DOI: https://doi.org/10.1016/j.jmatprotec.2009.12.011

[13] J. Pilling, Superheating in Aluminium base metal matrix composites Scripta Mettallurgica, vol 23 (1989), 1375-1380.

DOI: https://doi.org/10.1016/0036-9748(89)90062-8

[14] J. Luo, M. Li, W. Yu, and H. Li, The variation of strain rate sensitivity component and strain hardening component in isothermal compression of Ti-6Al-4V alloy and Material and Design 31 (2010) 741-748.

DOI: https://doi.org/10.1016/j.matdes.2009.09.055

[15] E. Karimi, A. Zarei-Hanzaki, M. Pishbin, H. Abedi, and P. Changizian, Instantenous strain rate sensitivity of wrought AZ31 magnesium alloy, materials and design 49 (2013)173-180.

DOI: https://doi.org/10.1016/j.matdes.2013.01.068

[16] I. Sabirov, M. R. Barnett, Y. Estrin, and P.D. Hodgson, The effect of strain rate on the deformation mechanisms and the strain rate sensitivity of an ultrafine grained Al alloy, scripta materialia 61 (2009) 181-184.

DOI: https://doi.org/10.1016/j.scriptamat.2009.03.032

[17] I. Tirton, M. Guden and H. Yildiz, Simulation of the strain rate sensitive flow behavior of SiC particle reinforced aluminum metal matrix composite, Computational materials Science 42 (2008) 570-578.

DOI: https://doi.org/10.1016/j.commatsci.2007.09.005

[18] Y. Prasac and K. Rao, Processing maps for hot deformation of rolled Az31 magnesium alloy plate: anisotropy of hot workability. Materials Science & Engineering A 487 (2008) 316-327.

DOI: https://doi.org/10.1016/j.msea.2007.10.038

[19] G. Quan, T. Ku, W. Song and B. Kang, The workability evaluation of wrought AZ80 magnesium alloy in hot compression Materials and Design 32 (2011) 2462-2468.

DOI: https://doi.org/10.1016/j.matdes.2010.11.025

[20] G. Shan, W. Yang, M. Yan, B,. Xie, J. Feng, and Q. Fu, Effect of temperature and strain rate on the tensile deformation of polyamide and polymer 48 (2007) 2958-2968.

DOI: https://doi.org/10.1016/j.polymer.2007.03.013

[21] C. Sun, J. Mc, Y. Yang, K. Harting, S. Maloy, H. Wang, and X. Zhang, Temperature and grain size dependent plastic instability and strain rate sensitivity of ultrafine grained austenitic Fe-14Cr-16N2 alloy, Material Science & Engineering A 597 (2014).

DOI: https://doi.org/10.1016/j.msea.2014.01.003

[22] A. Khan, A. Pandley, H.T. Gnaupel and R. Mishra, Mechanical response and texture evolution of AZ31 alloy of large strains for different strain rate and temperatures, International Journal of Plasticity 27(2011) 688-706.

DOI: https://doi.org/10.1016/j.ijplas.2010.08.009

[23] H. Asgari, J. Szpunar, and A. Odeshi, Texture evolution and dynamic mechanical behavior of cast AZ magnesium alloys under high strain rate compressive loading, Materials and Design 61 (2014) 26-34.

DOI: https://doi.org/10.1016/j.matdes.2014.04.049

[24] F. Khakbaz and M. Kazeminezhad, Strain rate sensitivity and fracture behavior of severely deformed Al-Mn alloy sheet, Material Science and Engineering A 532 (2012) 26-30.

DOI: https://doi.org/10.1016/j.msea.2011.10.057

[25] X. Wang, K. Nie, X. Hu, Y. Wang, X. Sa and K. Wu, Effect of extrusion temperatures on microstructure and mechanical properties of SiCp/Mg-Zn-Ca composite, Alloys and Compounds 532 (2012) 78-85.

DOI: https://doi.org/10.1016/j.jallcom.2012.04.023

[26] P. Vijayavel, V. Balasubramanian and S. Sundaram, Effect of shoulder diameter to pin diameter (D/d) ratio on tensile strength and ductility of friction stir processed LM 25AA- 5% SiCp metal matrix composites, Materials and Design 57 (2014) 1-9.

DOI: https://doi.org/10.1016/j.matdes.2013.12.008

[27] R. Anishi, G. Singh and M. Sivapragash, Techniques for processing metal matrix composite, a survey, Procedia 38 (2012) 3846-3854.

DOI: https://doi.org/10.1016/j.proeng.2012.06.441

[28] W. Tang, S. Huang, S. Zhang, D, Li, and Y. Peng, Influence of extrusion parameters on grain size and texture disturbance of az31 alloy, Materials Processing Technology 211 (2011) 1202-1209.

DOI: https://doi.org/10.1016/j.jmatprotec.2011.01.014

[29] X. Zhang, L. Geng and G. Wang, Fabrication of al-based hybrid composites reinforced with sil whiskers and sic nano particles by squeeze casting, Materials processing 176 (2006) 146-151.

DOI: https://doi.org/10.1016/j.jmatprotec.2006.03.125

[30] Y. Feng, L. Geng, P. Zheng, Z. Zheng, and G. Wang, Fabrication and characteristic of Al-hybrid composite reinforced with tungsten oxide particle and aluminium borite whisker by squeeze casting, Materials and Design 29 (2008) 2023-(2026).

DOI: https://doi.org/10.1016/j.matdes.2008.04.006

[31] D. Selvam, R. Smart and I. Dinaharan, Synthesis and characteristics of Al 6061-fly Ash-SiCp composites by stir casting and comprocasting methods, Energy Procedia 34 (2013) 637-646.

DOI: https://doi.org/10.1016/j.egypro.2013.06.795

[32] R. Zheng, J. Chen, Y. Zhang, K. Ameyama, and C. Ma, Fabrication and characteristics of hybrid structure al alloy matrix composite reinforced by high volume fraction of B4C particles, Materials Science and Engineering A, 601 (2014) 20-28.

DOI: https://doi.org/10.1016/j.msea.2014.02.032

[33] X. Zheng, Q. Zhang and H. Ha, Tensile behavior and microstructure of magnesium of AM 60- based hybrid composite containing Al2O3 fibres and particles, Materials Science and Engineering A 607 (2014) 369-276.

DOI: https://doi.org/10.1016/j.msea.2014.03.069

[34] W. Chen, Y. Liu, C. Yang, D. Zhu, and Y. Li, (SiCp+Ti)/7075Al hybrid composites with high strength and large plasticity fabricated by squeeze casting, Materials Science and Engineering A 609 (2014) 250-254.

DOI: https://doi.org/10.1016/j.msea.2014.05.008

[35] G. Fan, L. Geng, Z. Lai and G. Wang, Preparation and properties of hybrid composite based on (Ba PbO3+Al18B4O33)/6061Al System, Alloys and Compounds 482 (2009) 512-515.

DOI: https://doi.org/10.1016/j.jallcom.2009.04.064

[36] P. Vijian and V. Arunachalam, Modelling and multi-objective optimization of LM 24 aluminium alloy squeeze cast process parameters using genetic algorithm, Materials Processing Technology 186 (2007) 82-86.

DOI: https://doi.org/10.1016/j.jmatprotec.2006.12.019

[37] W. Wong, M. Gupta and C. Lim, Enhancing mechanical properties of pure aluminium using hybrid reinforcement methodology, Materials Science and Engineering A 423 (2006) 148-152.

DOI: https://doi.org/10.1016/j.msea.2005.09.122

[38] K. Amin and N. Mufti, Investigating cooling curve profile and microstructure of a squeeze cast Al-4% Cu alloy, Materials Processing Technology 212 (2012) 1631-1639.

DOI: https://doi.org/10.1016/j.jmatprotec.2012.02.017

[39] T. Rajmohan, K. Palanikumar and S. Ranganathan, Evaluation of mechanical and wear properties of hybrid aluminium matrix composites. Trans, Nonferrous Met. Soc. China 23 (2013) 2509-2517.

DOI: https://doi.org/10.1016/s1003-6326(13)62762-4

[40] M. Ghomashchi and A. Vikhrov, Squeeze casting: an overview, Materials Processing Technology 101(2000) 1-9.

DOI: https://doi.org/10.1016/s0924-0136(99)00291-5

[41] V. Hosseini, S. Shabestari and R. Ghnlizadeh, Study on the effect of cooling rate on the solidification parameters, microstructure and mechanical properties of LM13 alloy using cooling curve thermal analysis technique, Materials and Design 50 (2013).

DOI: https://doi.org/10.1016/j.matdes.2013.02.088

[42] W. Kim, Variation of true strain-rate sensitivity exponent as a function of plastic strain in the PM processed superplastic 7475 A1 +0. 7Zr alloy, Materials Science and Engineering A 277 (2000) 134-142.

DOI: https://doi.org/10.1016/s0921-5093(99)00552-3

[43] H. Ma, L. Huang, Y. Tian and J. Li, Effect of strain rate on dynamic mechanical behavior and microstructure evolution of 5 AO2-O aluminum alloy, Materials Science and Engineering; A. 606 (2014) 233-269.

[44] S. Osovski, D. Rihel, J. Rodriguez- Martinez and R. Zaera, Dynamic tensile necking: influence of specimen geometry and boundary conditions, Mechanics of Materials 62 (2013) 1-13.

DOI: https://doi.org/10.1016/j.mechmat.2013.03.002