Stabilization Potential of Cement Kiln Dust Treated Lateritic Soil

Abstract:

Article Preview

A dark reddish-brown lateritic soil collected from existing borrow pit abandoned by Reynold Construction Company Ltd behind New WAZOBIA Market on Latitude 08008′N and Longitude 04014′E along Ogbomoso-Ilorin Express road, Ogbomoso, Oyo State. Nigeria was treated with cement kiln dust (CKD), a by-product of long wet kiln, obtained from West African Portland Cement Organisation (WAPCO), Ewekoro, Ogun State, Nigeria, under varying moulding water content.The results show gradual reduction in the plasticity index of the samples, decrease in the maximum dry densities (MDD) with corresponding increase in the optimum moisture contents (OMC) of the treated soil samples. The unconfined compressive strength (UCS) of the treated samples increases with both increase in the treatment content as well as compactive effort from British Standard (BS) to West African Standard (WAS) however, there was reduction in the UCS with varying moulding water content as the water content increases and decreases relative to optimum moisture content. The maximum UCS was obtained at optimum moisture content.Cement kiln dust though regarded as waste can therefore serve as potential material in the stabilization of the lateritic soil when compacted at moisture content within its OMC.

Info:

Pages:

52-63

DOI:

10.4028/www.scientific.net/JERA.23.52

Citation:

J. R. Oluremi et al., "Stabilization Potential of Cement Kiln Dust Treated Lateritic Soil ", International Journal of Engineering Research in Africa, Vol. 23, pp. 52-63, 2016

Online since:

April 2016

Export:

Price:

$38.00

[1] Goswami, R.K., Mahanta, C., 2007 Leaching characteristics of residual lateritic soils stabilized with fly ash and lime for geotechnical applications. Waste Management 27 (4), 466–481.

DOI: 10.1016/j.wasman.2006.07.006

[2] Osinubi, K. J., Amadi, A.A. and Eberemu, A.O. 2009 Diffusion of Municipal Waste Contaminants in Compacted Lateritic Soil treated with Bentonite. 10 International Symposium on Environmental Geotechnology and Sustainable Development, Bochum.

DOI: 10.1504/ijewm.2012.049841

[3] Arulrajah A., Piratheepan J., Aatheesan T., Bo M.W. 2011a Geotechnical properties of recycled crushed brick in pavement applications. J. Mater. Civil. Eng. 23(10): 1444–52.

DOI: 10.1061/(asce)mt.1943-5533.0000319

[4] Kumpala, A., Horpibulsuk, S., Chinkullijniwat, A. and Shen, S. 2013a Engineering properties of recycled Calcium Carbide Residue stabilized clay as fill and pavement materials Construction and Building Materials 46, 203–210.

DOI: 10.1016/j.conbuildmat.2013.04.037

[5] Poon C.S. and Chan D. 2006 Feasible use of recycled concrete aggregates and crushed clay brick as unbounded road sub-base. Constr. Build. Mater. 20(8): 578–85.

DOI: 10.1016/j.conbuildmat.2005.01.045

[6] Debieb F and Kenai S. 2008 The use of coarse and fine crushed bricks as aggregate in concrete. Constr Build Mater 22(5): 886–93.

DOI: 10.1016/j.conbuildmat.2006.12.013

[7] Arulrajah A., Piratheepan J., Bo M.W. and Sivakuganc N. 2013 Geotechnical characteristics of recycled crushed brick blends for pavement sub-base applications. Can Geotechn J. 49(7): 796–811.

DOI: 10.1139/t2012-041

[8] Wartman J., Grubb D.G. and Nasim A.S.M. 2004 Select engineering characteristics of crushed glass. J Mater Civil Eng, ASCE 16(6): 526–39.

[9] Grubb D.G. et al. 2006 Laboratory evaluation of crushed glass-dredged material blends. J Geotechn Geoenviron Eng. 132(5): 562–76.

[10] Disfani M.M., Arulrajah A., Bo M.W. and Hankour R. 2011 Recycled crushed glass in road work applications. Waste Manage 31(11): 2341–51.

DOI: 10.1016/j.wasman.2011.07.003

[11] Arulrajah A., Ali M., Disfani M., Piratheepan J. and Bo M.W. 2012. Geotechnical performance of recycled glass-waste rock blends in footpath bases. J Mater Civil Eng ASCE http: /dx. doi. org/10. 1061/(ASCE)MT. 1943-5533. 0000617. Accepted 13. 06. 12.

DOI: 10.1061/(asce)mt.1943-5533.0000617

[12] Disfani M.M., Arulrajah A., Bo M.W. and Sivakugan N. 2012 Environmental risks of using recycled crushed glass in road applications. J Clean Prod 20(1): 170–9.

DOI: 10.1016/j.jclepro.2011.07.020

[13] Khalaf F.H. and DeVenney A.S. 2005 Properties of new and recycled clay brick aggregates for use in concrete. J Mater Civil Eng ASCE 17(4): 456–64.

DOI: 10.1061/(asce)0899-1561(2005)17:4(456)

[14] Tam V.M.Y. and Tam C.M. 2007 Crushed aggregates production from centralized combined and individual waste sources in Hong Kong. Constr Build Mater 21(4): 879–86.

DOI: 10.1016/j.conbuildmat.2005.12.016

[15] Courard L., Michel F. and Delhez P. 2010 Use of concrete road recycled aggregates for roller compacted concrete. Constr Build Mater 24: 390–5.

DOI: 10.1016/j.conbuildmat.2009.08.040

[16] Arulrajah A., Piratheepan J., Ali M.M.Y. and Bo M.W. 2012b Geotechnical properties of recycled concrete aggregate in pavement sub-base applications. Geotechn Test J ASTM 35(5). http: /dx. doi. org/10. 1520/GTJ10340.

DOI: 10.1520/gtj103402

[17] Bennert T., Papp W.J. and Gucunski N. 2000 Utilization of construction and demolition debris under traffic-type loading in base and subbase applications. J Transport Res Board 1714(1350): 33–9.

DOI: 10.3141/1714-05

[18] Arulrajah A., Piratheepan J., Disfani M. and Bo M.W. 2012a Geotechnical and geoenvironmental properties of recycled construction and demolition materials in pavement subbase applications. J Mater Civil Eng ASCE http: /dx. doi. org/10. 1061/(ASCE)MT. 1943-5533. 0000652. Accepted 13. 08. 12.

DOI: 10.1061/(asce)mt.1943-5533.0000652

[19] Arulrajah A., Ali M.M.Y., Piratheepan J., Bo M.W. 2011c Geotechnical properties of waste excavation rock in pavement sub-base applications. J. Mater. Civil. Eng. 24(7): 924–32.

DOI: 10.1061/(asce)mt.1943-5533.0000419

[20] Taha R., Al-Harthy A., Al-Shamsi K. and Al-Zubeidi M. 2002 Cement stabilization of reclaimed asphalt pavement aggregate for road bases and subbases. J Mater Civil Eng ASCE 14(3): 239–45.

DOI: 10.1061/(asce)0899-1561(2002)14:3(239)

[21] Puppala A.J., Hoyos L.R. and Potturi A.K. 2011 Resilient moduli response of moderately cement-treated reclaimed asphalt pavement aggregates. J Mater Civil Eng 23(7): 990–8.

DOI: 10.1061/(asce)mt.1943-5533.0000268

[22] Arulrajah A., Piratheepan J., Aatheesan T. and Bo M.W. 2011b Select chemical and engineering properties of waste water biosolids. Waste Manage 31(12): 2522–6.

[23] Arulrajah A., Disfani M., Suthagaran V. and Bo M. 2012b Laboratory evaluation of the geotechnical characteristics of wastewater biosolids in road embankments. J. Mater Civil Eng ASCE. http: /dx. doi. org/10. 1061/(ASCE)MT. 1943-5533. 0000739. Accepted 19. 11. 12.

DOI: 10.1061/(asce)mt.1943-5533.0000739

[24] Horpibulsuk S., Phetchuay C. and Chinkulkijniwat A. 2012 Soil stabilization by calcium carbide residue and fly ash. J Mater Civil Eng ASCE 2012; 24(2): 184–93.

DOI: 10.1061/(asce)mt.1943-5533.0000370

[25] Kumpala A. and Horpibulsuk S. 2012 Improvement of swelling-collapsible behaviors of silty clay by calcium carbide residue. In: Proceedings of International Conference on Transportation Geotechnics, Hokkaido, Japan.

DOI: 10.1201/b12754-46

[26] Horpibulsuk S., Phetchuay C., Chinkulkijiniwat A. and Cholaphatsorn A. 2013 Strength development in silty clay stabilized with calcium carbide residue and fly ash. Soils and Foundations 2013; (accepted for publication).

DOI: 10.1016/j.sandf.2013.06.001

[27] Kumpala A. and Horpibulsuk S. 2013b Engineering properties of calcium carbide residue stabilized silty clay. J Mater Civil Eng ASCE 2013. http: /dx. doi. org/10: 1061/(ASCE) MT. 1943-5533. 000061.

DOI: 10.1061/(asce)mt.1943-5533.0000618

[28] Kumpala A., Horpibulsuk S., Prongmanee N. and Chinkulkijniwat 2013c A. Influence of wet-dry cycles on compressive strength of calcium carbide residue-fly ash stabilized clay. J. Mater. Civil. Eng. ASCE (accepted for publication).

DOI: 10.1061/(asce)mt.1943-5533.0000853

[29] Arulrajah, A., Maghoolpilehrood, F., Disfani, M. M. and Horpibulsuk, S. 2014. Spent coffee grounds as a non-structural embankment fill material: engineering and environmental considerations, Journal of Cleaner Production, http: /dx. doi. org/10. 1016/j. jclepro. 2014. 03. 010.

DOI: 10.1016/j.jclepro.2014.03.010

[30] Mohammedbhai, G.T.G. and Baguant, B.T. 1990 Possibility of using Baggash Ash and other Furnace Residues as Partial Substitute for Cement in Mauritius. Revue Aggricole et Suclriere de l'lle Maurice. Vol. 64. Non 3. Pp. 1-10.

[31] Osinubi K. J., Katte V. Y., 1997 Effect of Elapsed Time After mixing on Grain size, plasticity characteristic Soil - lime mixes, NSE Technical transaction Vol. 32, No 4.

[32] Medjo E. and Riskowiski, G. 2004 A Procedure for Processing Mixture of Soil, Cement and Sugar cane Baggash. Agricultural Engineering Interantional. The Journal of Scientific Research and Development. Manuscript BC 990. Vol. 1 – 5.

[33] Stephen A. T. (2006). Stabilization Potential of Baggash Ash on Black Cotton Soil. Unpublished M. Sc. Thesis, Department of Civil Engineering, Ahmadu Bello University, Zaria.

[34] Osinubi, K. J. and Moses, G. (2011).

[35] Trivedi, J. S., Nair, S. and Iyyunni, C. 2013 Optimum Utilization of Fly Ash for Stabilization of Sub-Grade Soil using Genetic Algorithm Procedia Engineering 51, 250 – 258. doi: 10. 1016/j. proeng. 2013. 01. 034.

DOI: 10.1016/j.proeng.2013.01.034

[36] Amadi, A. 2010 Evaluation of Changes in Index Properties of latentic soil Stabilized with Fly Ash Leonardo Electronic Journal of Practices and Technologies, Issue 17. pp.69-78.

[37] Alhassan M. and Mustapha, A.M. 2007 Effect of rice husk ash on cement stabilized laterite Leonardo Electronic J. Practice and Technol., vol. 6, no. 11, pp.47-58, (2007).

[38] Alhassan, M. 2008 Potentials of rice husk ash for soil stabilization, Assumption University Journal of Technology, vol. 11, no. 4, pp.246-250.

[39] Brooks, R. M. 2009. Soil Stabilization with Fly Ash and Rice Husk Ash., International Journal of Research and Reviews In Applied Sciences, Vol. 1(3), pp.209-217.

[40] Sabat, A. K., Nanda, R. P. 2011 Effect of marble dust on strength and durability of Rice husk ash stabilized expansive soil. International Journal of Civil and Structural Engineering, Volume 1, No 4, pp.939-948.

[41] Abood, T. T., Kasa, A. B., and Chik, Z. B. 2007. Stabilisation of Silty Clay Soil using Chloride Compounds. Journal of Engineering Science and Technology, Vol. 2(1), pp.102-110.

[42] Abeln, D.L., Hastings, R.J., Scxhreiber, R.J., and Yonley, C. 1990. Detailed Illustration of Contingent Management Practices for Cement Kiln Dust. Research and Development Bulletin, SP115T, Portland Cement Association, Skokie, IL.

[43] Sreekrishnavilasam, A. and Santagata, M. C. 2006 Development of criteria for the utilization of Cement kiln dust (ckd) in highway infrastructures. Joint Transportation Research Program, School of Civil Engineering, Purdue University and Indiana Department of Transportation and the U.S. Department of Transportation, Project No. C-36-50Y.

DOI: 10.5703/1288284313395

[44] Parsons, R. L., Kneebone, E. and Milburn, J. P. 2004 Use of Cement Kiln Dust for Subgrade Stabilization, Kansas Department of Transportation, Division of Operations, Bureau of Materials and Research, Topeka, Kansas.

[45] Siddique, R. 2006. Utilization of cement kiln dust (CKD) in cement mortar and concrete - an overview. Resources, Conservation and Recycling 48, 315–338.

DOI: 10.1016/j.resconrec.2006.03.010

[46] Siddique, R. 2014 Utilization of industrial by-products in concrete. In 2nd International Conference on Sustainable Civil Engineering Structures and Construction Materials 2014 (SCESCM 2014) Procedia Engineering 95 335 – 347. doi: 10. 1016/j. proeng. 2014. 12. 192.

DOI: 10.1016/j.proeng.2014.12.192

[47] EPA, U.S. Environmental Protection Agency. 1993 Report to congress on cement kiln dust, EPA-530-R-94-001.

[48] Abd El-Aleem, S., Abd-El-Aziz, M.A., Heikal, M. and El Didamony, H. 2005 Effect of cement kiln dust substitution on Chemical and physical properties and compressive Strength of portland and slag cements The Arabian Journal for Science and Engineering, Vol. 30, No 2B, pp.263-273.

[49] Davis, T.A. and Hooks, D. B 1978 EPA: 67012-75-043, Cincinnati , OH.

[50] Miller, G.A., Zaman, M., Rahman, J., and Tan, K.N. 2003 Laboratory and Field Evaluation of Soil Stabilization Using Cement Kiln Dust. Final Report, No. ORA 125- 5693, Planning and Research Division, Oklahoma Department of Transportation.

[51] Abd El-Fattah, W.I. and El-Didamony, H. 1981 Thermal Investigation of Electrostatic Precipitator Kiln Dust Thermochim. Acta., 51 p.297.

DOI: 10.1016/0040-6031(81)85167-2

[52] Adaska, W. S. and Taubert, D. H. 2008 Beneficial use of cement kiln dust IEEE/PCA 50th Cement Industry Technical Conference, Miami, Florida, USA, May 19-22.

DOI: 10.1109/citcon.2008.24

[53] Bhatty, J.I., Bhattacharja, S., and Todres, H.A. 1996 Use of Cement Kiln Dust in Stabilizing Clay Soils, Research & Development Bull, RP343, Portland Cement Assoc., Skokie, IL.

[54] Miller G.A., and Azad, S. 2000 Influence of Soil Type on Stabilization with Cement Kiln Dust. Construction and Building Materials 14 (2), 89-97.

DOI: 10.1016/s0950-0618(00)00007-6

[55] Miller, G.A., and Zaman, M. 2000 Filed and Laboratory Evaluation of Cement Kiln Dust as a Soil Stabilizer. Transportation Research Record 1714. Journal of the Transportation Research Board, National Science Council. Washington D.C. 25-32.

DOI: 10.3141/1714-04

[56] Al-Harthy A. S, Taha R. and Al-Maamary F. 2003 Effect of cement kiln dust (CKD) on mortar and concrete mixtures. Constr Build Mater 17(5): 353–60.

DOI: 10.1016/s0950-0618(02)00120-4

[57] Amin A.M., Ebied E. and El-Didamony H. 1995 Activation of granulated slag with calcined cement kiln dust. Silic Ind 60(3/4): 109–15.

[58] Babaian P.M., Wang K., Mishulovich A., Bhattacharja S. and Shah S.P. 2003 Effect of mechanical activation on reactivity of cement kiln dust–fly ash systems. ACI Mater J 100(1): 55–62.

DOI: 10.14359/12463

[59] Batis G., Rakanta E., Sideri E., Chaniotakis E. and Papageorgiou A. 2002 Advantages of simultaneous use of cement kiln dust and blast furnace slag. In: Proceedings of the international conference on challenges of concrete construction.

DOI: 10.1680/scc.31777.0021

[60] Bhatty, M.S.Y. 1986 Properties of blended cements made with Portland cement, cement kiln dust, fly ash, and slag. Proceedings of the International Congress on the Chemistry of Cement. Communications Theme-3 1(4): 118–27.

DOI: 10.1520/stp36393s

[61] Dyer T.D., Halliday J.E. and Dhir R.K. 1999 An investigation of the hydration chemistry of ternary blends containing cement kiln dust. J Mater Sci 34(20): 4975–83.

[62] El-Sayed H.A., Gabr N. A, Hanafi S. and Mohran M.A. 1991 Reutilization of by-pass kiln dust in cement manufacture. In: Proceedings of the international conference on blended cement in construction.

[63] Heikal M., Aiad I. and Helmy M.I. 2002 Portland cement clinker, granulated slag and by-pass cement dust composites. Cem Concr Res 32(11): 1805–12.

DOI: 10.1016/s0008-8846(02)00867-0

[64] Kjellsen K.O., Detwiler R.J. and Gjorv O.E. 1992 Pore structure of plain cement pastes hydrated at different temperatures. Cem Concr Res 22(1): 112–20.

DOI: 10.1016/0008-8846(90)90055-3

[65] Konsta-Gdoutos M.S. and Shah S.P. 2003 Hydration and properties of novel blended cements based on cement kiln dust and blast furnace slag. Cem Concr Res 33(8): 1269–76.

DOI: 10.1016/s0008-8846(03)00061-9

[66] Kunal, P. Siddique, R. and Rajor, A. 2014 Influence of bacterial treated cement kiln dust on the properties of concrete Construction and Building Materials 52, 42–51.

DOI: 10.1016/j.conbuildmat.2013.11.034

[67] Ramakrishnan V. and Balaguru P. 1987 Durability of concrete containing cement kiln dust (SP-100). ACI Special Publication (SP-100) 100(4): 305–22.

[68] Salem T.H. and Ragai M.S.H. 2001 Electrical conductivity of granulated slag cement kiln dust–silica fume pastes at different porosities. Cem Concr Res 31(5): 781–7.

DOI: 10.1016/s0008-8846(01)00461-6

[69] Shoaib M.M., Balaha M.M. and Abdel-Rahman A.G. 2000 Influence of cement kiln dust substitution on the mechanical properties of concrete. Cem Concr Res 30(33): 337–71.

DOI: 10.1016/s0008-8846(99)00262-8

[70] Wang K., Shah S.P. and Mishulovich A. 2004 Effects of curing temperature and NaOH addition on hydration and strength development of clinker-free fly ash binders. Cem Concr Res 34(2): 299–309.

DOI: 10.1016/j.cemconres.2003.08.003

[71] Todres, H.A., Mishulovich, J., and Ahmed, J. 1992 Cement kiln Dust Management: Permeability. Research & Development Bulletin RD103T, Portland Cement Assoc., Skokie, IL.

[72] BS 1377 1990 Methods of Testing Soils for Civil Engineering Purposes. British Standard Institution, London.

[73] BS 1924 1990 Methods of Test for Stabilized Soils. British Standards Institute, London.

[74] Madu, R. M. 1975 Some Nigerian residual soils – their characteristics and relative road building properties in a group basis. Proc. 6th Reg. Conf. for Africa on Soil Mechanics and Foundation Engineering, Durban, 1, 121-129.

[75] Osinubi, K. J. 2006 Influence of compactive efforts on lime-slag treated tropical black clay Journal of Materials in Civil Engineering, ASCE. Vol. 18, No 2, pp.175-181.

DOI: 10.1061/(asce)0899-1561(2006)18:2(175)

[76] Millard, R. S. 1993. Cement and lime stabilization. Road building in the tropics. Trans. Res. Lab. State-of the-Art Rev., 9, 183-185.

[77] Miller G.A. and Zaman M. 2000 Field and laboratory evaluation of cement kiln dust as a soil stabilizer. Transportation Research Record, No. 1714; 25–32.

DOI: 10.3141/1714-04

[78] Waters, R.D., and Schwieger, K.J. 2002 Cement Kiln Dust Stabilization Study. Terrracon. Project 01021414. Wichita, Kansas. 4p.

[79] Osinubi, K.J. and Stephen, T.A. 2007 Influence of compactive efforts on bagasse ash treated black cotton soil. Nigerian Journal of Soil and Environmental Research, Vol. 7, pp.92-101.

DOI: 10.4314/njser.v7i1.28422

[80] Mu'azu M. A. 2000 Influence of Compactive Effort on Bagasse Ash with Cement Treated Lateritic Soil. Leonardo Electronic Journal of Practices and Technologies.

[81] Moses, G. 2008 Stabilization of black cotton soil with ordinary portland cement Using Bagasse ash as admixture IRJI Journal of Research in Engrg. Vol. 5 No. 3 , pp.107-115.

[82] Oriola, F.O.P. and Moses, G. 2011 Compacted black cotton soil treated with cement kiln dust as hydraulic barrier material American Journal of Scientific and Industrial Research, ISSN: 2153-649X doi: 10. 5251/ajsir. 2011. 2. 4. 521. 530, http: /www. scihub. org/AJSIR.

DOI: 10.5251/ajsir.2011.2.4.521.530

[83] Das, B. M 2000 Fundamental of Geotechnical Engineering. 4th ed. Thomson Learning, USA.

[84] Daniel, D. E. and Wu, Y. K. 1993 Compacted clay liners and cones for arid site. J of geotech. Eng'rg. ASCE. Vol. 119, no. 2. p.223 – 237.

[85] Taha, M.R., and Kabir, M. H 2005 Assessment of Physical Properties of a Granite Residual Soil as an Isolation Barrier. Electronic Journal of Geotechnical Engineering. EJGE, vol 60, pp.263-274.

[86] Moses, G. and Afolayan J.O. 2011 Compacted Foundry Sand Treated with Cement Kiln Dust as Hydraulic Barrier Material Electronic Journal of Geotechnical Engineering, Vol. 16 Bund. C 337 – 354.

DOI: 10.1007/s10706-012-9577-3

[87] Ogunribido, T. H. T. 2012 Geotechnical Properties of Saw Dust Ash Stabilized Southwestern Nigeria Lateritic Soils Environmental Research, Engineering and Management, No. 2(60), pp.29-33.

DOI: 10.5755/j01.erem.60.2.986

[88] Osinubi, K J and Oyelakin, M A 2012 Optimising soil-cement-ash stabilisation mix for maximum compressive strength: A case study of the tropical clay sub-base material stabilised with cement-locus bean waste ash In: Laryea, S., Agyepong, S.A., Leiringer, R. and Hughes, W. (Eds) Procs 4th West Africa Built Environment Research (WABER) Conference, 24-26 July 2012, Abuja, Nigeria, 1207-1218.

[89] Osinubi, K. J. 1998b. Influence of compactive efforts and compaction delays on lime-treated soil. Journal of Transportation Engineering, ASCE, Vol. 124, No. 2, pp.149-155.

DOI: 10.1061/(asce)0733-947x(1998)124:2(149)

In order to see related information, you need to Login.