Li Storage Properties of Ag and SnO 2 Nanopowders Synthesized from Reverse Micelles

Abstract:

Article Preview

Ag and SnO2 nanopowders were synthesized by reverse-micelle method. The reverse micelles were prepared to form tiny aqueous droplets dispersed in oil-based solvents. Two reverse micelles containing metallic salts and reductive agents were rigorously mixed to form nanoparticles inside aqueous droplets by a reductive reaction. The spherical powders of 20~50 nm were formed during the process. The resulting Ag and SnO2 nanopowders were examined as the anode electrode for lithium-ion cells. The reversible discharge capacity of the Ag and SnO2 nanopowders after 25 cycles were 315 and 380 mAh/g, respectively.

Info:

Edited by:

A.R. Yavari, A. Inoue, D. Morris and R. Schulz

Pages:

1-7

DOI:

10.4028/www.scientific.net/JMNM.26.1

Citation:

J. H. Ahn et al., "Li Storage Properties of Ag and SnO 2 Nanopowders Synthesized from Reverse Micelles ", Journal of Metastable and Nanocrystalline Materials, Vol. 26, pp. 1-7, 2005

Online since:

January 2005

Export:

Price:

$35.00

[1] I.A. Courtmey, W.R. McKinnon and J.R. Dahn, J. Electrochem. Soc. 146 (1999) 59068.

[2] Y. Idota, A. Matsufuji, Y. Mackawa, and T. Miyasaka, Science 276 (1997) 1395.

[3] C.S. Wang, A. J. Appleby, F.E. Little, Solid State Ionics 147 (2002) 13.

[4] A. Ulus, Y. Rosenberg, L. Burstein, and E. Peled, J. Electrochem. Soc. 149 (2002) A635.

[5] L.Y. Beaulieu and J.R. Dahn, J. Electrochem. Soc. 147 (2000) 3237.

[6] D. Wang, S. Wen, J. Chen, S. Zhang and F. Li, Phys. Rev. B49 (1994)14282.

[7] R.D. Tarey and T. A. Raju, Thin Solid Films. 128 (1995) 128.

[8] T. Minami, H. Nanto and S. Takata, Jpn. J. Appl. Phys. 27 (1988) L287.

[9] V. Schlosser and Wind, Proc. of the 8th EC Photovaolataic Solar Energy Conf., Florence (1988) p.998.

[10] J. Lin, W.L. Zhou and C.J. O'Connor, Materials Letters 49 (2001) 282.

[11] E.E. Carpenter, A. Kumbhar, J.A. Wiemann, H. Srikanth, J. Wiggins, W.L. Zhou, C. J. O'Connor, Materials Science and Engineering A 286 (2000) 81.

[12] T.V. Anuradha and S. Ranganathan, Nanostructured Materials 12 (1999) 1063.

[13] C.H. Lu, H.C. Wang, J. European Ceramic Society 23 (2003) 865.

[14] J. Zhang, L.D. Sun, C.S. Liao, C.H. Yan, Solid State Communications 124 (2002) 45.

[15] D.H. Chen, J.J. Yeh, and T.C. Huang, J. Colloid and Interface Science 215 (1999) 159.

[16] Y. -J. Kim, B-K. Kim, H. Chung and J. -H. Ahn, J. Metastable Nanocryst. Mater. 20-21 (2004) 303.

[17] J. Yin, M. Wada, S. Yoshida, K. Ishihara and S. Tanase, J. Electrochem. Soc. 150 (2003) A1129.

[18] W. Liu, X. Huang, Z. Wang, H. Li and L. Chen, J. Electrochem. Soc. 145 (1) (1998) 145.

In order to see related information, you need to Login.