The Formation and Migration Energy of Bivacancy in fcc Metals

Abstract:

Article Preview

In the work we propose a method for determining of the formation energy of bivacancy using molecular dynamics method. The key moment of the method for determining of the formation energy of bivacancy is the use of the value ζ, the minimum work that must be spent to remove one atom to infinity from the kink in the monatomic step on the surface of the crystal, calculated indirectly through the experimental data on the formation energy of the vacancy and the sublimation energy. The energy of migration of bivacancy in the work was determined from the temperature dependence of the diffusion coefficient when one bivacancy was introduced into the calculation block.

Info:

Edited by:

Mikhail D. Starostenkov, Aleksandr I. Potekaev, Sergey V. Dmitriev and Prof. P. Ya. Tabakov

Pages:

11-16

Citation:

G. M. Poletaev et al., "The Formation and Migration Energy of Bivacancy in fcc Metals", Journal of Metastable and Nanocrystalline Materials, Vol. 30, pp. 11-16, 2018

Online since:

January 2018

Export:

Price:

$41.00

* - Corresponding Author

[1] H.J. Wollenberger, Point defects, in: R.W. Cahn, P. Haasen (Eds. ), Physical Metallurgy, V. 2, Elsevier Science B.V., North-Holland, 1996, pp.1621-1722.

[2] M.A. Shtremel, Strength of alloys, V. 1. Lattice defects, Metallurgiya, Moscow, (1982).

[3] G.M. Poletaev, M.D. Starostenkov, Contributions of different mechanisms of self-diffusion in face-centered cubic metals under equilibrium conditions, Physics of the Solid State. 52 (2010) 1146-1154.

DOI: https://doi.org/10.1134/s1063783410060065

[4] T. Kino, J.S. Koehler, Vacancies and divacancies in quenched gold, Physical Review. 162 (1967) 632-648.

DOI: https://doi.org/10.1103/physrev.162.632

[5] W. Schule, A. Panzarasa, Properties of vacancies and divacancies in copper-gold alloys, Journal of Physics F - Metal Physics. 10 (1980) 1375-1387.

DOI: https://doi.org/10.1088/0305-4608/10/7/007

[6] M.W. Finnis, J.E. Sinclair, A simple empirical N-body potential for transition metals, Philosophical Magazine A. 50 (1984) 45-55.

[7] M. Doyama, Y. Kogure, Embedded atom potentials in fcc and bcc metals, Computational Materials Science. 14 (1999) 80-83.

DOI: https://doi.org/10.1016/s0927-0256(98)00076-7

[8] F. Cleri, V. Rosato, Tight-binding potentials for transition metals and alloys, Physical Review B. 48 (1993) 22-33.

DOI: https://doi.org/10.1103/physrevb.48.22

[9] G.M. Poletaev, M.D. Starostenkov, Structural transformations of stacking fault tetrahedra upon the absorption of point defects, Technical Physics Letters. 35 (2009) 1-4.

DOI: https://doi.org/10.1134/s1063785009010015

[10] G.M. Poletaev, D.V. Dmitrienko, V.V. Diabdenkov, V.R. Mikrukov, M.D. Starostenkov, Molecular dynamics investigation of the diffusion permeability of triple junctions of tilt and mixed-type boundaries in nickel, Physics of the Solid State. 55 (2013).

DOI: https://doi.org/10.1134/s1063783413090254

[11] G.M. Poletaev, M.D. Starostenkov, Mutual diffusion at the interface in a two-dimensional Ni-Al system, Technical Physics Letters. 29 (2003) 454-455.

DOI: https://doi.org/10.1134/1.1589555

[12] G.M. Poletaev, D.V. Novoselova, V.M. Kaygorodova, The causes of formation of the triple junctions of grain boundaries containing excess free volume in fcc metals at crystallization, Solid State Phenomena. 249 (2016) 3-8.

DOI: https://doi.org/10.4028/www.scientific.net/ssp.247.3

[13] A.N. Orlov, Yu.V. Trushin, Energies of point defects in metals, Energoatomizdat, Moscow, (1983).