Study of the Influence of the V in the Zr2Fe Alloy from Hydrogen Storage on Thermodynamic Properties

Abstract:

Article Preview

Hydrogen storage in its solid state is one of the main challenges for mobile and stationary applications. Some metal hydrides are potential candidates for energy storage. This is an experimental research, which represents a contribution to the study of Hydrogen storage in its solid state, by studying the influence of the proportional substitution of V for Zr in the stoichiometric ratio Zr2-XVXFe (X=0.0, 0.1 y 0.2). Results indicate that the synthesis process generates a multi-phase type microstructure, and the absorption and desorption kinetic is less than 5 minutes at room temperature, in line with the parameters established by the United States Department of Energy; however, it is clear that the desorption capacity decreases.

Info:

Edited by:

Prof. Arcady Zhukov

Pages:

22-29

Citation:

A. Martinez et al., "Study of the Influence of the V in the Zr2Fe Alloy from Hydrogen Storage on Thermodynamic Properties", Journal of Metastable and Nanocrystalline Materials, Vol. 31, pp. 22-29, 2019

Online since:

January 2019

Export:

Price:

$41.00

* - Corresponding Author

[1] N.A. Rusman, M. Dahari. (2016). Science Direct A review on the current progress of metal hydrides material for solid-state hydrogen storage applications, 1–19.

[2] E. Dündar-Tekkaya, Y. Yürüm. (2016). Mesoporous MCM-41 material for hydrogen storage: A short review. International Journal of Hydrogen Energy, 1, 1–7. http://doi.org/10.1016/j.ijhydene.2016.03.050.

DOI: https://doi.org/10.1016/j.ijhydene.2016.03.050

[3] L. Amirav & A. P. Alivisatos. (2010). Photocatalytic hydrogen production with tunable nanorod heterostructures. Journal of Physical Chemistry Letters, 1(7), 1051–1054. http://doi.org/10.1021/jz100075c.

DOI: https://doi.org/10.1021/jz100075c

[4] D. Das. (2001). Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy, 26(1), 13–28. http://doi.org/10.1016/S0360-3199 (00)00058-6.

DOI: https://doi.org/10.1016/s0360-3199(00)00058-6

[5] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, & M. Antonietti. (2009). A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 8(1), 76–80. http://doi.org/10.1038/nmat2317.

DOI: https://doi.org/10.1038/nmat2317

[6] F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, & P. Feng. (2010). Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. Journal of the American Chemical Society, 132(34), 11856–11857. http://doi.org/10.1021/ja103843d.

DOI: https://doi.org/10.1021/ja103843d

[7] H. Ghorbani, & R. Seyfollahi. (2016). Hybrid system for potential room temperature hydrogen storage, 131, 115–119.

DOI: https://doi.org/10.1016/j.vacuum.2016.06.005

[8] J. Ni, & H. Liu. (2007). Experimental research on refrigeration characteristics of a metal hydride heat pump in auto air-conditioning. International Journal of Hydrogen Energy, 32(13), 2567–2572. http://doi.org/10.1016/j.ijhydene.2006.09.038.

DOI: https://doi.org/10.1016/j.ijhydene.2006.09.038

[9] Ichimura K, Inoue N, Watanabe K, Takeuchi T. Absorption and desorption of hydrogen, deuterium, and tritium for ZreVeFe getter. J Vac Sci Technol 1984; a 2:1341e7.

[10] L, Rodríguez, & L. T. Bermúdez. (1995). Usos y aplicaciones de la simulación en la investigación agropecuaria, (1), 198–204.

[11] Z. Guang-wei, L. Xin-zhong, X.U. Da-ming, G.U. Jing-jie, F.U. Heng-zhi, D.U. Yong, & H.E. Yue-hui. (2012). Thermocalc and TífSíCL coupling based method to determine solidification paths of alloys solidified under condition of Biot d 0 . 1, 22, 139–146. http://doi.org/10.1016/S1003-6326 (11)61153-9.

DOI: https://doi.org/10.1016/s1003-6326(11)61153-9

[12] A. Manzoni, H. Daoud, S. Mondal, S. Smaalen, Van, R. Völkl, U. Glatzel, & N. Wanderka. (2013). High entropy alloys and comparison with equilibrium phases predicted by Thermocalc, 552, 430–436.

DOI: https://doi.org/10.1016/j.jallcom.2012.11.074

[13] O. A. Ojo, & F. Tancret, (2009). Clarification on Thermocalc and Dictra simulation of constitutional liquation of gamma prime during welding of Ni-base superalloys., Computational Materials Science, 45(2), 388–389. http://doi.org/10.1016/j.commatsci.2008.10.014.

DOI: https://doi.org/10.1016/j.commatsci.2008.10.014

[14] F. Tang, & B. Hallstedt. (2016). example crossmark, 55(October), 260–269.

[15] P. Pei, X.P. Song, J. Liu, M. Zhao, & G.L. Chen. (2009). Improving hydrogen storage properties of Laves phase related BCC solid solution alloy by SPS preparation method. International Journal of Hydrogen Energy, 34 (20), 8597–8602. http://doi.org/10.1016/j.ijhydene. 2009.08.038.

DOI: https://doi.org/10.1016/j.ijhydene.2009.08.038

[16] H. Iba, & E. Akiba. (1995). The relation between microstructure and hydrogen absorbing property in Laves phase-solid solution multiphase alloys. Journal of Alloys and Compounds, 231(1-2), 508–512. http://doi.org/10.1016/0925-8388(95)01863-8.

DOI: https://doi.org/10.1016/0925-8388(95)01863-8

[17] R. Janot, M. Latroche, A. Percheron-Guegan. (2005) Development of a hydrogen absorbing layer in the outer shell of high pressure hydrogen tanks. Materials Science and Engineering B. V 123, pp: 187-193.

DOI: https://doi.org/10.1016/j.mseb.2005.07.016

[18] I.Yu. Zavaliy, M.V. Lototsky, A.B. Riabov, V.A. Yartys. (1995). Oxide-modified Zr-Fe alloys: thermodynamic calculations, X-ray analysis and hydrogen absorption properties. Journal of Alloys and Compounds 219 (1995) 38-40.

DOI: https://doi.org/10.1016/0925-8388(94)05053-8

[19] X.B. Yu., Z. Wu., B.J. Xia., N.X Xu., Enhancement of hydrogen storage capacity of Ti–V–Cr–Mn BCC phase alloys,, Journal of Alloys and Compounds, v. 372, pp.272-277, (2004).

DOI: https://doi.org/10.1016/s0925-8388(03)01142-3

[20] K. Bhanumurthy and G.B. Kale (1993). Scr. Metall. Mater., 28, 753-756.