Effect of Hydrogen Redistribution during Aging on the Martensitic Transformation and Superelasticity of Nanocrystalline TiNi Alloy

Abstract:

Article Preview

The paper presents the results of a study the hydrogen effect on the structural-phase transformations and the superelasticity in binary ultrafine-grained (UFG) TiNi based alloy after diffusion redistribution hydrogen as a result of aging at room temperature. The redistribution of hydrogen in the process of long-term aging after electrolytic hydrogenation of UFG wire specimens the Ti49,1Ni50,9 (at.%) stabilizes the B2 structure. Superelasticity in samples aged at room temperature after hydrogenation is significantly deteriorated.

Info:

Edited by:

Prof. Arcady Zhukov

Pages:

30-34

Citation:

A. Baturin et al., "Effect of Hydrogen Redistribution during Aging on the Martensitic Transformation and Superelasticity of Nanocrystalline TiNi Alloy", Journal of Metastable and Nanocrystalline Materials, Vol. 31, pp. 30-34, 2019

Online since:

January 2019

Export:

Price:

$41.00

* - Corresponding Author

[1] R. Burch, N.B. Manson, Absorption of hydrogen by titanium-cobalt and titanium-nickel intermetallic alloys. Part 1 – Experimental results, J. Chem. Soc., Faraday Trans. 1, 75 (1979) 561-577.

DOI: https://doi.org/10.1039/f19797500561

[2] K. Asaoka, K. Yokoyama, M. Nagumo, Hydrogen. Embrittlement of Nickel–Titanium Alloy in Biological Environment, Metal. Mater. Trans. A. 33 (2002) 495-501.

DOI: https://doi.org/10.1007/s11661-002-0111-8

[3] A. Lotkov, A. Baturin, V. Grishkov, I. Rodionov, V. Kudiyarov, A. Lider, Effect of hydrogen on superelasticity of the titanium nickelide-based alloy, AIP Conf. Proc. 1683 (2015) 020124.

DOI: https://doi.org/10.1063/1.4932814

[4] K. Yokoyama, T. Ogawa, K. Takashima, K. Asaoka , J. Sakai, Hydrogen embrittlement of Ni–Ti superelastic alloy aged at room temperature after hydrogen charging, Mater. Sci. Eng. A. 466 (2007) 106–113.

DOI: https://doi.org/10.1016/j.msea.2007.02.102

[5] F. Gramaoun, M. Ltaief , T. Bouraoui, T. Ben Zineb, Effect of hydrogen on the tensile strength of aged Ni-Ti superelastic alloy, J. Intell. Mater. Syst. Struct. 17 (2011) 2053–(2059).

DOI: https://doi.org/10.1177/1045389x11423427

[6] T. Ogawa, T. Oda, K. Maruoka, J. Sakai, Effect of aging at room temperature on hydrogen embrittlement behavior of Ni-Ti superelastic alloy immersed in acidic fluoride solution, Int. J. Mech. Mater. Eng. 10 (2015) 22.

DOI: https://doi.org/10.1186/s40712-015-0039-6

[7] A. Runciman, K.C. Chen, A.R. Pelton, C. Trépanier, Effects of Hydrogen on the Phases and Transition Temperatures of NiTi, Proc. Int. Conf. Shape Mem. Super. Technol., Pacific Grove, California, USA Brian Berg, M.R. Mitchell, and Jim Proft, editors, (2006).

[8] M. Kubenová, J. Zálesák, J. Cermák, A. Dlouhy , Impact of hydrogen-assisted heat treatments on microstructure and transformation path in a Ni-rich NiTi shape memory alloy J. Alloys Comp. 577S, (2013) S287–S290.

DOI: https://doi.org/10.1016/j.jallcom.2012.07.096

[9] K. Yokoyama, M. Tomita, K. Asaoka, J. Sakai, Hydrogen absorption and thermal desorption behaviors of Ni–Ti superelastic alloy subjected to sustained tensile-straining test with hydrogen charging, Scripta Mater. 57 (2007) 393-396.

DOI: https://doi.org/10.1016/j.scriptamat.2007.05.002

[10] D. Holec, M. Friák, A. Dlouhý, Ab initio study of point defects in NiTi-based alloys, Phys. Rev. B 89 (2014) 014110.

DOI: https://doi.org/10.1103/physrevb.89.014110

[11] A. Lachiguer C. Bouby, F. Gamaoun et al, Modeling of hydrogen effect on the superelastic behavior of Ni-Ti shape memory alloy wires, Smart Mater. Struct. 25 (2016) 115047.

DOI: https://doi.org/10.1088/0964-1726/25/11/115047

[12] W. E. Letaief, T. Hassine, F. Gamaoun, Tensile behaviour of superelastic NiTi alloys charged with hydrogen under applied strain, Mater. Sci. Techn. 33 (2017) 1533–1538.

DOI: https://doi.org/10.1080/02670836.2017.1320084

[13] K.Yokoyama, T. Hashimoto, J. Sakai, First interactions between hydrogen and stress-induced reverse transformation of Ni–Ti superelastic alloy, Phil. Mag. Lett. (2017).

[14] V. N. Grishkov, A. I. Lotkov, A. A. Baturin et al, Temperature dependence of inelastic strain recovery in TiNi-based alloys under torsion, AIP Conf. Proc. 1683 (2015) 020125.

DOI: https://doi.org/10.1063/1.4932815

[15] Y. Wang, X. Ren, K. Otsuka, Strain Glass: Glassy Martensite, Materials Science Forum. 583 (2008) 67-84.

DOI: https://doi.org/10.4028/www.scientific.net/msf.583.67