Effect of Zr on Structure and Resistance to Intergranular Corrosion of Severely Deformed 2024 Aluminum Alloy

Abstract:

Article Preview

Effects of severe plastic deformation by isothermal сryorolling with a strain of e~2 and subsequent natural and artificial aging on the structure and resistance to intergranular corrosion (IGC) of the preliminary quenched 2024 aluminum alloy of standard and Zr modified compositions were investigated. Increasing the temperature of aging leads to decreasing the alloy IGC resistance due to precipitation of more stable strengthening S-phase (Al2CuMg), rising difference of electrochemical potentials at grain and subgrain boundaries. Zr additions, оn the opposite, significantly increased the alloy IGC resistance in both naturally and artificially aged conditions, reducing its depth and intensity. The main structural factor, influencing the alloy corrosion behavior, is excess phases: their composition, volume fraction and distribution.

Info:

Edited by:

Prof. Arcady Zhukov

Pages:

35-42

Citation:

S. Krymskiy et al., "Effect of Zr on Structure and Resistance to Intergranular Corrosion of Severely Deformed 2024 Aluminum Alloy", Journal of Metastable and Nanocrystalline Materials, Vol. 31, pp. 35-42, 2019

Online since:

January 2019

Export:

Price:

$41.00

* - Corresponding Author

[1] E.A. Starke, J.T. Staley, Prog. Aerosp. Sci. 32 (1996) 131.

[2] V.S. Sinyavkiy, V.D. Val'kov, V.D. Kalinin, Corrosion and protection of aluminum alloys, second ed., Metallurgy, Moscow, (1986).

[3] Information on http://aluminium.matter.org.uk/aluselect/default.asp.

[4] L. Beaunier, J. Phys. Coll. 43 (1982) 271.

[5] K.D. Ralston, N. Birbilis, C.H.J. Davies, Scripta Mater. 63 (2010) 1201.

[6] K.D. Ralston, D. Fabijanic, N. Birbilis, Electrochim. Acta. 56 (2011) 1729.

[7] W. Wei, K.X. Wei, Q.B. Du, Mat. Sci. Eng. A. 454 (2007) 536.

[8] A. Balyanov, J. Kutnyakova, N.A. Amirkhanova et al., Scr. Mater. 51 (2004) 225.

[9] H. Miyamoto, K. Harada, T. Mimaki et al., Corr. Sci. 50 (2008) 1215.

[10] L. Peguet, B. Malki, B. Baroux, Corr. Sci. 49 (2007) (1933).

[11] J.G. Brunner, J. May, H.W. Höppel et al., Electrochim. Acta. 55 (2010) (1966).

[12] N.A. Amirkhanova, R.Z. Valiev, I.V. Alexandrov et al., USATU Herald. 7 (2006) 42.

[13] M.M. Sharma, C.W. Ziemian, J. Mat. Eng. Perf. 17 (2008) 870.

[14] M.F. Naeini, M.H. Shariat, M.J. Eizadjou, All. Comp. 509 (2011) 4696.

[15] M. Hockauf, Meyer L.W., Nickel D. et al., J. Mater. Sci. 43 (2008) 7409.

[16] T.C. Tsai, T.H. Chuang, Mat. Sci. Eng. A. 225 (1997) 135.

[17] K.G. Krishna, K. Sivaprasad, T.S.N.S. Narayanan et al., Corr. Sci. 60 (2012) 82.

[18] P.A. Khaimovich, Chall. Atomic Sci. Tech. 4 (2006) 28.

[19] S.V. Krymskiy, E.V. Avtokratova, M.V. Markushev et al., Mater. Sci. Forum. 667 (2011) 925.

[20] S.V. Krymskiy, O.Sh. Sitdikov, E.V. Avtokratova et al., Rev. Adv. Mat. Sci. 31 (2012) 145.

[21] S.V. Krymskiy, E.V. Avtokratova, O.Sh. Sitdikov et al., Phys. Met. Metallogr. 226 (2015) 676.

[22] E. Avtokratova, S. Krymskiy, A. Mikhaylovskaya et al., Mater. Sci. Forum. 838 (2016) 367.

[23] N. Rangaraju, T. Raghuram, B.V. Krishna et al., Mat. Sci. Eng. A. 398 (2005) 246.

[24] F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena, Elsevier, Oxford, (2004).

[25] Y. Shi, Q. Pan, M. Li et al., J. All. Comp. 612 (2014) 42.

[26] R. Ly, K.T. Hardwig, H. Castaneda, Corr. Sci. 139 (2018) 47.