Characterization of the Superelastic and Structural Characteristics of β-Ti Alloys by Strain-Controlled Cycling after Thermomechanical Processing and Subsequent Ageing


Article Preview

In this comparative study, the structural and superelastic characteristics of two thermomechanically treated metastable Ti-Nb based (Ti-22Nb-6Zr) and Ti-Zr based (Ti-18Zr-14Nb and Ti-18Zr-13Nb-2Ta (at. %)) alloy systems were studied. To study the influence of room temperature storage on the functional properties of these two alloy systems, the alloys were subjected to a multistage testing routine consisting of four ten-cycle loading-unloading testing series alternated with three room temperature ageing periods (1, 5 and 20 days). Based on microstructure-properties relationships, it was shown that for each alloy system, the forward stress-induced martensitic transformation was essentially dependent on the material microstructure, whereas the subsequent reverse martenstic transformation was controlled by the material composition. The Ti-Zr based alloys demonstrated more stable functional behavior than their Ti-Nb based counterparts. More specifically Ti-18Zr-13Nb-2Ta, subjected to a combination of cyclic training alternated with room temperature ageing showed a significant improvement in superelastic behavior with small accumulated strains and narrow stress hysteresis.


Edited by:

Prof. Arcady Zhukov




V. Sheremetyev et al., "Characterization of the Superelastic and Structural Characteristics of β-Ti Alloys by Strain-Controlled Cycling after Thermomechanical Processing and Subsequent Ageing", Journal of Metastable and Nanocrystalline Materials, Vol. 31, pp. 43-50, 2019

Online since:

January 2019




* - Corresponding Author

[1] S. Miyazaki, H.Y. Kim, H. Hosoda, Mater. Sci. Eng. A 438-440 (2006) 18.

[2] H.Y. Kim, S. Miyazaki, Shap. Mem. Superelasticity 2 (2016) 380.

[3] S. Prokoshkin, V. Brailovski, S. Dubinsky, Y. Zhukova, V. Sheremetyev, A. Konopatsky. K. Inaekyan, Shap. Mem. Superelasticity 2 (2016) 130.


[4] V. Brailovski, S.D. Prokoshkin, M. Gauthier, K. Inaekyan, S. Dubinskiy, M. I. Petrzhik, M. Filonov, Mat. Sci. and Eng. C 31(3) (2011) 643.

[5] M. Niinomi, J. Mech. Beh. Biomed. Mater. 1 (2008) 30.

[6] T.W. Duerig, J. Albrecht, D. Richter, P. Fischer, Acta Metall. 30 (1982) 2161.

[7] M.F. Ijaz, H.Y. Kim, H. Hosoda, S. Miyazaki, Mater. Sci. Eng. C 48 (2015) 11.

[8] P. Castany, A. Ramarolahy, F. Prima, P. Laheurte, C. Curfs, T. Gloriant, Acta Mater. 88 (2015) 102.

[9] M. Tahara, H.Y. Kim, H. Hosoda, S. Miyazaki , Acta Mater. 57 (2009) 2461.

[10] V.Sheremetyev, V.Brailovski, S.Prokoshkin, K.Inaekyan, S.Dubinskiy, Materials Science and Engineering C, 58 (2016) 935-944.


[11] A.S. Konopatsky, S.M. Dubinskiy, Yu.S. Zhukova, V. Sheremetyev, V. Brailovski, S.D. Prokoshkin, M.R. Filonov, Materials Science and Engineering A 702 (2017) 301.


[12] S.D. Prokoshkin, V. Brailovski, A.V. Korotitskiy, K. Inaekyan, S.M. Dubinskiy, M.R. Filonov, M.I. Petrzhik, J. Alloys Compd. 577S (2013) 418.


[13] J.B. Nelson, D.P. Riley, Proc. Phys. Soc. 57 (1945) 160.

[14] S.D. Prokoshkin, V. Brailovski, K. Inaekyan, A.V. Korotitskiy, A. Kreitcberg. In: N. Resnina, V. Rubanik (Eds.), Shape Memory Alloys: Properties, Technologies, Opportunities Trans Tech Publication (2015) 260.


[15] V. Sheremetyev, S.D. Prokoshkin, V. Brailovski, S.M. Dubinskiy, A.V. Korotitskiy, M.R. Filonov, M.I. Petrzhik, Phys. Met. Metallogr. 116 (4) (2015) 413.


[16] J. Ma. Karaman I, H.J. Maier, Y.I. Chumlyakov, Acta Mater. 58 (2010) 2216.

[17] Y. Al-Zain, Y.Sato, H.Y. Kim, H. Hosoda, T.H. Nam, S. Miyazaki, Acta Mater. 60 (2012) 4237.

[18] M.F. Ijaz, H.Y. Kim, H. Hosoda, S. Miyazaki, Scripta Mater. 72-73 (2014) 29.

[19] T. Yoneyama, S. Miyazaki, Shape Memory Alloys for Biomedical Applications, Woodhead Publishing, Cambridge, (2009).

[20] S . Miyazaki, T. Imai, Y . Igo, K. Otsuka, Metall Trans. A 17 (1986) 115.