A High-Resolution Amperometric Acetylcholine Sensor Based on Nano-Assembled Carbon Nanotube and Acetylcholinesterase Thin Films


Article Preview

We demonstrate a carbon nanotube based high-resolution biosensor for acetylcholine sensing. Carbon nanotubes are deposited on a silicon wafer in a repeated fashion with layer-by-layer nano self-assembly technique. With nano-assembled acetylcholinesterase molecules on the surface, the carbon nanotube biosensor is capable of detecting acetylcholine at an ultra-low concentration of 100 pM. The sensitivity of the acetylcholine sensor is measured as 7.2 µA/decade. The real-time measurement shows the response time of the biosensor is approximately 6 sec. Both the carbon nanotube film and the acetylcholinesterase film are crucial in the sensing process. Due to its high resolution, fast response, small size, and low cost, the carbon nanotube biosensor has tremendous potential for applications in medical research and clinical diagnosis.



Edited by:

N. Ali




W. Xue and T. Cui, "A High-Resolution Amperometric Acetylcholine Sensor Based on Nano-Assembled Carbon Nanotube and Acetylcholinesterase Thin Films", Journal of Nano Research, Vol. 1, pp. 1-9, 2008

Online since:

January 2008



[1] B. Liu, Y. -H. Yang, Z. -Y. Wu, H. Wang, G. -L. Shen, R. -Q. Yu, A potentiometric acetylcholinesterase biosensor based on plasma-polymerized film, Sensor. Actuat. B-Chem. 104 (2005) 186-190.

[2] H. Varoqui, J.D. Erickson, Active transport of acetylcholine by the human vesicular acetylcholine transporter, J. Biol. Chem. 271 (1996) 27229-27232.

DOI: https://doi.org/10.1074/jbc.271.44.27229

[3] S. Lin, C. -C. Liu, T. -C. Chou, Amperometric acetylcholine sensor catalyzed by nickel anode electrode, Biosens. Bioelectron. 20 (2004) 9-14.

[4] P. Uutela, R. Reinilä, P. Piepponen, R.A. Ketola, R. Kostiainen, Analysis of acetylcholine and choline in microdialysis samples by liquid chromatography/tandem mass spectrometry, Rapid Commun. Mass Sp. 19 (2005) 2950-2956.

DOI: https://doi.org/10.1002/rcm.2160

[5] L. Alfonta, E. Katz, I. Willner, Sensing of acetylcholine by a tricomponent-enzyme layered electrode using faradaic impedance spectroscopy, cyclic voltammetry, and microgravimetric quartz crystal microbalance transduction methods, Anal. Chem. 72 (2000).

DOI: https://doi.org/10.1021/ac990439d

[6] A.B. Kharitonov, M. Zayats, A. Lichtenstein, E. Katz, I. Willner, Enzyme monolayerfunctionalized field-effect transistors for biosensor applications, Sensor. Actuat. B-Chem. 70 (2000) 222-231.

DOI: https://doi.org/10.1016/s0925-4005(00)00573-6

[7] J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Nanotube molecular wires as chemical sensors, Science 287 (2000) 622-625.

[8] J. Kong, M.G. Chapline, H. Dai, Functionalized carbon nanotubes for molecular hydrogen sensors, Adv. Mater. 13 (2001) 1384-1386.

DOI: https://doi.org/10.1002/1521-4095(200109)13:18<1384::aid-adma1384>3.0.co;2-8

[9] K. Besteman, J. -O. Lee, F.G.M. Wiertz, H.A. Heering, C. Dekker, Enzyme-coated carbon nanotubes as single-molecule biosensors, Nano Lett. 3 (2003) 727-730.

DOI: https://doi.org/10.1021/nl034139u

[10] K. -S. Teh, L. Lin, MEMS sensor material based on polypyrrole-carbon nanotube nanocomposite: film deposition and characterization, J. Micromech. Microeng. 15 (2005) 2019-(2027).

DOI: https://doi.org/10.1088/0960-1317/15/11/005

[11] J. Wang, M. Musameh, Carbon nanotube/Teflon composite electrochemical sensors and biosensors, Anal. Chem. 75 (2003) 2075-(2079).

DOI: https://doi.org/10.1021/ac030007+

[12] W. Xue, T. Cui, Characterization of layer-by-layer self-assembled carbon nanotube multilayer thin films, Nanotechnology 18 (2007) 145709.

DOI: https://doi.org/10.1088/0957-4484/18/14/145709

[13] W. Xue. T. Cui, A high-resolution amperometric acetylcholine sensor based on nanoassembled carbon nanotubes, IEEE Int. Conf. on Micro Electro Mechanical Systems (Kobe, Japan 2007) 529-532.

DOI: https://doi.org/10.1109/memsys.2007.4433151

[14] F. Hua, J. Shi, Y. Lvov, T. Cui, Patterning of layer-by-layer self-assembled multiple types of nanoparticle thin films by lithographic technique, Nano Lett. 2 (2002) 1219-1222.

DOI: https://doi.org/10.1021/nl0257521

[15] R. Martel, T. Schmidt, H.R. Shea, T. Hertel, Ph. Avouris, Single- and multi-wall carbon nanotube field-effect transistors, Appl. Phys. Lett. 73 (1998) 2447-2449.

DOI: https://doi.org/10.1063/1.122477

[16] W. Xue, Y. Liu, T. Cui, High-mobility transistors based on nanoassembled carbon nanotube semiconducting layer and SiO2 nanoparticle dielectric layer, Appl. Phys. Lett. 89 (2006) 163512.

DOI: https://doi.org/10.1063/1.2361278

[17] J. L. Alessandrini, J. Vila, Conformation of a single polyelectrolyte chain in the Coulombic unscreened limit, Phys. Rev. E 49 (1994) R3584-R3586.

DOI: https://doi.org/10.1103/physreve.49.r3584