Synthesis, Structural and Mechanical Characterization of Amorphous and Crystalline Boron Nanobelts


Article Preview

Amorphous and crystalline (rhombohedral structure with [111] growth direction) boron nanobelts were synthesized by the vapor-liquid-solid technique. Their structure and chemical compositions were studied by various electron and atomic force microscopy techniques. Most amorphous and crystalline belts have a width to thickness ratio of 2 and are covered with a layer of amorphous silicon oxide. The crystalline belt cores are defect-free single crystals. Gold catalyst thickness and synthesis temperature are the two prominent parameters determining structure of the synthesized nanobelts. The elastic modulus and hardness were measured using nanoindentation and atomic force microscopy three-point bending techniques. The indentation elastic modulus and hardness were measured to be 92.84.5 GPa and 8.40.6 GPa for amorphous belts, and 72.73.9 GPa and 6.80.6 GPa for crystalline ones, respectively. The three-point bending elastic moduli were found to be 87.83.5 GPa and 72.22.4 GPa for amorphous and crystalline, respectively. The measured mechanical properties are 4-5 times lower than those of the counterpart bulk materials.



Edited by:

N. Ali




H. Ni and X. D. Li, "Synthesis, Structural and Mechanical Characterization of Amorphous and Crystalline Boron Nanobelts ", Journal of Nano Research, Vol. 1, pp. 10-22, 2008

Online since:

January 2008



[1] V. I. Matkovich (Eds), Boron and Refractory Boride, Springer-Verlag, Berlin, (1977).

[2] R.M. Adams, Ed., Boron, Metallo-Boron, Compounds and Boranes, Interscience Publishers, New York, (1964).

[3] N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, Reed Educational and Professional Publishing Ltd, UK, (1997).

[4] J.E. Bailey, in Handbook of Polymer-Fibre Composites, F.R. Jones (Eds. ), Longman Scientific & Technical, Harlow, UK, (1994).

[5] F.N. Tavadze, J.V. Lominadze, A.F. Khvedelidze, G.V. Tsagareishvili, M.K. Shorshorov, S.I. Bulichev, The effect of impurities on the mechanical properties of zone melted boron, J. LessCommon Met. 82 (1981) 95-97.

DOI: 10.1016/0022-5088(81)90203-4

[6] L. Cao, Z. Zhang, G. Li, J. Zhang, W. Wang, Well-aligned boron nanowire arrays, Adv. Mater. 13 (2001) 1701-1704.

[7] Y. Wu, B. Messer, P. Yang, Superconducting MgB2 nanowires, Adv. Mater. 13 (2001) 14871489.

[8] J.Z. Wu, S.H. Yun, A. Dibos, D.K. Kim, M. Tidrow, Fabrication and characterization of boron-related nanowires, Microelectr. J. 34 (2003) 463-470.

DOI: 10.1016/s0026-2692(03)00074-0

[9] Y.J. Zhang, H. Ago, M. Yumura, T. Komatsu, S. Ohshima, K. Uchida, S. Iijima, Synthesis of crystalline boron nanowires by laser ablation, Chem. Commun. 23 (2002) 2806-2807.

DOI: 10.1039/b207449d

[10] Y.J. Zhang, H. Ago, M. Yumura, S. Ohshima, K. Uchida, T. Komatsu, S. Iijima, Study of the growth of boron nanowires synthesized by laser ablation, Chem. Phys. Lett. 385 (2004) 177183.

DOI: 10.1016/j.cplett.2003.12.052

[11] X.M. Meng, J.Q. Hu, Y. Jiang, C.S. Lee, S. T. Lee, Boron nanowires synthesized by laser ablation at high temperature, Chem. Phys. Lett. 370 (2003) 825-828.

DOI: 10.1016/s0009-2614(03)00202-1

[12] Q. Yang, J. Sha, J. Xu, Y.J. Ji, X.Y. Ma, J.J. Niu, H.Q. Hua, D. R. Yang, Aligned single crystal boron nanowires, Chem. Phys. Lett. 379 (2003) 87-90.

DOI: 10.1016/j.cplett.2003.08.019

[13] T.T. Xu, J.G. Zheng, N.Q. Wu, A.W. Nicholls, J.R. Roth, D.A. Dikin, R.S. Ruoff, Crystalline boron nanoribbons: synthesis and characterization, Nano Lett. 4 (2004) 963-968.

DOI: 10.1021/nl0498785

[14] S. Jin, H. Mavoori, C. Bower, R. B. van Dover, High critical currents in iron-clad superconducting MgB2 wires, Nature 411 (2001) 563-566.

[15] P.C. Canfield, D.F. Finnermore, S.L. Bud'ko, J.E. Ostenson, G. Lapertot, C.E. Cunningham, C. Petrovic, Superconductivity in dense MgB2 wires, Phys. Rev. Lett. 86 (2001) 2423-2426.

DOI: 10.1103/physrevlett.86.2423

[16] R.S. Ruoff, D. Qian, W.K. Liu, Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements Comptes rendus Physique 4 (2003) 993-1008.

DOI: 10.1016/j.crhy.2003.08.001

[17] E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes, Science 277 (1997) 1971-(1975).

DOI: 10.1126/science.277.5334.1971

[18] H. Ni, X. D. Li, Young's modulus of ZnO nanobelts measured using atomic force microscopy and nanoindentation techniques, Nanotechnology 17 (2006) 3591-3597.

DOI: 10.1088/0957-4484/17/14/039

[19] G. Feng, W.D. Nix, Y. Yoon, C. J. Lee, A study of the mechanical properties of nanowires using nanoindentation, J. Appl. Phys. (2006) 074304.

[20] S. Mao, M. Zhao, Z.L. Wang, Nanoscale mechanical behavior of individual semiconducting nanobelts, Appl. Phys. Lett. 83 (2003) 993-995.

DOI: 10.1063/1.1597754

[21] X.D. Bai, P.X. Gao, Z.L. Wang, E. D. Wang, Dual-mode mechanical resonance of individual ZnO nanobelts, Appl. Phys. Lett. 82 (2003) 4806-4808.

DOI: 10.1063/1.1587878

[22] H. Ni, X.D. Li, G. S. Cheng, R. Klie, Mechanical properties of single-crystal GaN nanowires, J. Mate. Res. 21 (2006) 2882-2887.

[23] E. Stern, G. Cheng, E. Cimpoiasu, R. Klie, S. Guthrie, J. Klemic, I. Kretzschmar, E. Steinlauf, D. Turner-Evans, E. Broomfield, J. Hyland, R. Koudelka, T. Boone, M. Young, A. Sanders, R. Munden, T. Lee, D. Routenberg, M. A. Reed, Electrical characterization of single GaN nanowires, Nanotechnology 16 (2005).

DOI: 10.1088/0957-4484/16/12/037

[24] G. Fasol, Room-temperature blue gallium nitride laser diode, Science, 272 (1996) 1751-1752.

DOI: 10.1126/science.272.5269.1751

[25] X.D. Li, B. Bhushan, Fatigue studies of nanoscale structures for MEMS/NEMS applications using nanoindentation techniques, Surf. Coat. Technol. 163-164 (2003) 521-526.

DOI: 10.1016/s0257-8972(02)00662-x

[26] X.D. Li, B. Bhushan, K. Takashima, C.W. Baek, Y.K. Kim, Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques, Ultramicroscopy 97 (2003) 481-494.

DOI: 10.1016/s0304-3991(03)00077-9

[27] X.D. Li, B. Bhushan, Nanofatigue studies of ultrathin hard carbon overcoats used in magnetic storage devices, J. Appl. Phys. 91 (2002) 8334-8336.

DOI: 10.1063/1.1452699

[28] X.D. Li, B. Bhushan, Development of a nanoscale fatigue measurement technique and its application to ultrathin amorphous carbon coatings, Scripta Mater. 47 (2002) 473-479.

DOI: 10.1016/s1359-6462(02)00181-1

[29] X.D. Li, B. Bhushan, A review of nanoindentation continuous stiffness measurement technique and its applications, Mater. Charact. 48 (2002) 11-36.

DOI: 10.1016/s1044-5803(02)00192-4

[30] X.D. Li, B. Bhushan, Nanomechanical characterisation of solid surfaces and thin films, Int. Mater. Rev. 48 (2003)125-164..

[31] H. Ni, X.D. Li, Self-assembled composite nano-/micronecklaces with SiO2 beads in boron strings, Appl. Phys. Lett. 89 (2006) 053108.

DOI: 10.1063/1.2245443

[32] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elasticmodulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564-1583.

DOI: 10.1557/jmr.1992.1564

[33] H. Ni, X.D. Li, H.S. Gao, Elastic modulus of amorphous SiO2 nanowires, Appl. Phys. Lett. 88 (2006) 043108.

DOI: 10.1063/1.2165275

[34] X.D. Li, X.N. Wang, Q.H. Xiong, P.C. Eklund, Mechanical properties of ZnS nanobelts, Nano Lett. 5 (2005)1982-(1986).

Fetching data from Crossref.
This may take some time to load.