Molecular Dynamics Simulations of Nanoparticle-Surface Collisions in Crystalline Silicon


Article Preview

We present a microscopic description for the impacting process of silicon nanospheres onto a silicon substrate. In spite of the relatively low energy regime considered (up to 1 eV/atom), the impacting process exhibits a rich behavior: A rigid Hertzian model is valid for speeds below 500 m/s, while a quasi-ellipsoidal deformation regime emerges at larger speeds. Furthermore, for speeds up to 1000 m/s the particle undergoes a soft landing and creates a long-lived coherent surface phonon. Higher speeds lead to a rapid attenuation of the coherent phonon due to a partial diamond cubic to-tin phase transformation occurring in the particle.



Edited by:

N. Ali




P. Valentini and T. Dumitrica, "Molecular Dynamics Simulations of Nanoparticle-Surface Collisions in Crystalline Silicon ", Journal of Nano Research, Vol. 1, pp. 31-39, 2008

Online since:

January 2008


[1] C.L. Cleveland and U. Landman, Dynamics of cluster-surface collision, Science 257 (1992) 355-361.

[2] H. Haberland, Z. Insepov and M. Moseler, Thin film growth by energetic cluster impact (ECI): comparison between experiment and molecular dynamics simulations, Z. Phys. D 26 (1993) 229-232.

DOI: 10.1016/0921-5107(93)90161-f

[3] H. Haberland, Z. Insepov and M. Moseler, Molecular-dynamics simulation of thin-film growth by energetic cluster impact, Phys. Rev. B 51 (1995) 11061-11067.

DOI: 10.1103/physrevb.51.11061

[4] M. Moseler, O. Rattunde, J. Nordiek and H. Haberland, On the origin of surface smoothing by energetic cluster impact: molecular dynamics simulation and mesoscopic modeling, Nucl. Inst. Meth. B 164-165 (2000) 522-530.

DOI: 10.1016/s0168-583x(99)01081-2

[5] K. Beardmore, R. Smith and R. P. Webb, Energetic fullerene interactions with Si crystal surfaces, Modelling Simul. Mater. Sci. Eng. 2 (1994) 313-328.

DOI: 10.1088/0965-0393/2/3/002

[6] N.P. Rao, H.J. Lee, M. Kelkar, D.J. Hansen, J.V.R. Heberlein, P.H. McMurry and S.L. Girshick, Nanostructured materials production by hypersonic plasma particle deposition, Nanostruct. Mater. 9 (1997) 129-132.

DOI: 10.1016/s0965-9773(97)00035-4

[7] N.P. Rao, N. Tymiak, J. Blum, A. Neuman, H.J. Lee, S.L. Girshick, P.H. McMurry and J. Heberlein, Hypersonic plasma particle deposition of nanostructured silicon and silicon carbide, J. Aerosol Sci. 29 (1998) 707-720.

DOI: 10.1016/s0021-8502(97)10015-5

[8] F. Di Fonzo, A. Gidwani, M.H. Fan, D. Neumann, D.I. Iordanoglou, J.V.R. Heberlein, P.H. McMurry, S.L. Girshick, N. Tymiak, W.W. Gerberich and N.P. Rao, Focused nanoparticlebeam deposition of patterned microstructures, Appl. Phys. Lett. 77 (2000).

DOI: 10.1063/1.1306638

[9] K.A. Johnson, Contact Mechanics, first ed., Cambridge, Cambridge, (1985).

[10] L.N. Rogers and J. Reed, The adhesion of particles undergoing an elastic-plastic impact with a surface, J. Phys. D 17 (1984) 677-689.

DOI: 10.1088/0022-3727/17/4/007

[11] M. Xu and K. Willeke, Right-angle impaction and rebound of particles, J. Aerosol Sci. 24 (1993) 19-30.

DOI: 10.1016/0021-8502(93)90082-k

[12] W.W. Gerberich, W.M. Mook, C.R. Perrey, C.B. Carter, M.I. Baskes, R. Mukherjee, A. Gidwani, J. Heberlein, P.H. McMurry and S.L. Girshick, Superhard silicon nanospheres, J. Mech. Phys. Sol. 51 (2003) 979-992.

DOI: 10.1016/s0022-5096(03)00018-8

[13] L.D. Landau and E.M. Lifshitz, Theory of Elasticity, first ed., Pergamon, Oxford, (1986).

[14] J. Tersoff, New empirical approach for the structure and energy of covalent systems, Phys. Rev. B 37 (1988) 6991-7000.

DOI: 10.1103/physrevb.37.6991

[15] R. Rurali and E. Hernandez, Trocadero: a multiple-algorithm multiple-model atomistic simulation program, Comp. Mat. Sci. 28 (2003) 85-106.

DOI: 10.1016/s0927-0256(03)00100-9

[16] Y. Hu and S.B. Sinnott, Constant temperature molecular dynamics simulations of energetic particle-solid collisions: comparison of temperature control methods, J. Comp. Phys. 200 (2004) 251-266.

DOI: 10.1016/

[17] We computed a based on the microscopic definition given in M. Vergeles, A. Maritan, J. Koplik and J.R. Banavar, Adhesion of solids, Phys. Rev. E 56 (1997) 2626-2634.

DOI: 10.1103/physreve.56.2626

[18] P. Valentini and T. Dumitrica, Microscopic theory for nanoparticle-surface collisions in crystalline silicon, Phys. Rev. B 75 (2007) 224106-9.

DOI: 10.1103/physrevb.76.179901

[19] Y. Tanaka, Y. Yamazaki, and K. Okumura, Bouncing gel balls: Impact of soft gels onto rigid surface, Eurphys. Lett. 63 (2003) 146-152.

DOI: 10.1209/epl/i2003-00462-x

[20] K. Gaal-Nagy, P. Pavone and D. Strauch, Ab initio study of the beta-tin -> Imma -> sh phase transitions in silicon and germanium, Phys. Rev. B 69 (2005) 134112-11.

DOI: 10.1103/physrevb.69.134112

[21] M.I. McMahon and R.J. Nelmes, New high pressure phase of Si, Phys. Rev. B 47 (1993) 8337-8340.

DOI: 10.1103/physrevb.47.8337

[22] H. Balamane, T. Halicioglu and W.A. Tiller, Comparative study of silicon empirical interatomic potentials, Phys. Rev. B 46 (1992) 2250-2279.

DOI: 10.1103/physrevb.46.2250

[23] V. Domnich, Y. Gogotsi and S. Dub, Effect of phase transformations on the shape of the unloading curve in the nanoindentation of silicon, Appl. Phys. Lett. 76 (2000) 2214-2216.

DOI: 10.1063/1.126300

[24] C.F. Sanz-Navarro, S.D. Kenny and R. Smith, Atomistic simulations of structural transformations of silicon surfaces under nanoindentation, Nanotechnology 15 (2004) 692- 697.

DOI: 10.1088/0957-4484/15/5/049

Fetching data from Crossref.
This may take some time to load.