Effect of Alumina Additives on the Crystallite Size and Lattice Strain of Nanocrystalline Hydroxyapatite Obtained by Dry Mechanochemical Process


Article Preview

Hydroxyapatite (HAp) is an important bioactive ceramic that possessing beneficial biocompatibility and osteoconductivity resulting in bonding to human bone tissues. The dry mechanochemical process is widely used to prepare nanometer HAp. However, little research has been carried out concerning the correlation between adding alumina and the structural changes during the mechanochemical process. In this research, special attention was paid to the effect of alumina additive on the crystallite size and lattice strain of nanocrystalline HAp. Characterization was accomplished by using powder X-ray diffraction (XRD). The obtained data demonstrated that the diffraction lines corresponding to the HAp phase became broad and weak with increasing alumina additive. In fact, the nanocrystalline HAp with high crystallinity degree can be synthesized in the proper amounts of alumina additive via mechanochemical method. Furthermore, an increase of alumina additive led to increase in lattice strain and decrease in size of the powder grain.



Edited by:

Prof. Andreas Öchsner, Prof. Irina V. Belova and Prof. Graeme E. Murch






M. Sanayei et al., "Effect of Alumina Additives on the Crystallite Size and Lattice Strain of Nanocrystalline Hydroxyapatite Obtained by Dry Mechanochemical Process ", Journal of Nano Research, Vol. 11, pp. 145-149, 2010

Online since:

May 2010




[1] V.P. Orlovskii, V.S. Komlev and S.M. Barinov: Inorgan. Mater. Vol. 38 (2002), p.973 (Translated from Neorganicheskie Materialy Vol. 38 (2002), p.1159).

[2] V.S. Komlev, S.M. Barinov, V.P. Orlovskii and S. G. Kurdyumov: Refract. Ind. Ceramics Vol. 42 (2001), Nos. 5-6 (Translated from Ogneupory I Tekhnicheskaya Keramika No. 6 (2001), p.23).

[3] R. Martinetti, L. Dolcini and C. Mangano: Anal. Bioanal. Chem. Vol. 381 (2005), p.634.

[4] A. Siddharthan, S.K. Seshadri and T.S. Sampath Kumar: Scripta Mater. Vol. 55 (2006), p.175.

[5] B. Viswanath and N. Ravishankar: Scripta Mater. Vol. 55 (2006), p.863.

[6] Z. Evis and R.H. Doremus: Mater. Lett. Vol. 59 (2005), p.3824.

[7] Y.M. Kong, S. Kim and H.E. Kim: J. Am. Ceram. Soc. Vol. 82 (1999), p.2963.

[8] S. H. Rhee: Biomaterials Vol. 23 (2002), p.1147.

[9] C.C. Silva, M.P.F. Grac¸ M.A. Valente and A.S.B. Sombra: J. Mater. Sci. Vol. 42 (2007), p.3851.

[10] C.C. Silva, D. Thomazini, A.G. Pinheiro, F. Jr. Lanciotti, J.M. Sasaki, J.C. Goes and A.S.B. Sombra: J. Phys. Chem. Solids Vol. 63 (2002), p.1745.

[11] C.C. Silva, M.A. Valente, M.P.F. Grac and A.S.B. Sombra: Solid State Sci. Vol. 6 (2004), p.1365.

[12] JCPDS. Pattern 24-0033(HAp), 09-0080 (CaHPO4).

[13] A. Shokuhfar, B. Nasiri-Tabrizi, O. Gashti and R. Ebrahimi-Kahrizsangi: Def. Diff. Forum Vol. 283- 286 (2009), p.98.

DOI: 10.4028/www.scientific.net/ddf.283-286.98

[14] T. Nakano, A. Tokumura and Y. Umakoshi: J. Mater. Sci. Mater. Med. Vol. 12 (2001), p.703.

[15] E. Landi, A. Tampieri, G. Celotti and S. Sprio: J. Eur. Ceram. Soc. Vol. 20 (2000), p.2377.

[16] P. Pourghahramani, E. Forssberg: Int. J. Miner. Process Vol. 79 (2006), p.106.

[17] C. Suryanarayana: Prog. Mater. Sci. Vol. 46 (2001), p.1.

[18] M. Jarchon: Clin. Orthop. Relat. R. Vol. 187 (1981), p.259.

In order to see related information, you need to Login.