Synthesis of LiFePO4/C Nanocomposite and its Electrochemical Properties


Article Preview

LiFePO4/C nanocomposite was synthesized by the polyol process without any further heating as a post step and its properties were compared to LiFePO4 with no carbon. The X-ray diffraction patterns of all samples were indexed on the basis of the orthorhombic olivine-type structure. The field emission-SEM and TEM images of the nanocomposite showed agglomerated larger particles with rod type mixed with carbon nanoparticles. The initial discharge capacity of LiFePO4/C nanocomposite showed 166 mAh/g at a current density of 0.1 mA/cm2 in the voltage range of 2.5-4.2 V without capacity fading during the 20 cycles. Furthermore, the nanocomposite appeared more enhanced high rate performance, compared with the result of LiFePO4 with no carbon, due to the existence of conductive agents such as carbon which suppresses particle growth and exhibits improved electronic conductivity and lithium ion diffusivity, simultaneously.



Edited by:

Prof. Andreas Öchsner, Prof. Irina V. Belova and Prof. Graeme E. Murch




J. S. Lim et al., "Synthesis of LiFePO4/C Nanocomposite and its Electrochemical Properties", Journal of Nano Research, Vol. 13, pp. 21-26, 2011

Online since:

February 2011




[1] A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough: J. Electrochem. Soc. Vol. 144 (1997), p.1188.

[2] N. Ravet, J. B. Goodenough, S. Besner, M. Simoneau, P. Hovington and M. Armand: Abstract 127, The Electrochemical Society Meeting Abstract Vol. 99-2, Honolulu, HI, Oct 17-22, (1999).

[3] H. Huang, S. C. Yin and L. F. Nazar: Electrochem. Solid-State Lett. Vol. 4 (2001), p. A170.

[4] S. Y. Chung, J. T. Bloking and Y. M. Chiang: Nat. Mater. Vol. 1 (2002), p.123.

[5] P. Hearle, B. Ellis, N. Coombs and L. F. Nazar: Nat. Mater. Vol. 3 (2005), p.147.

[6] C. Delacourt, P. Poizot, J. M. Tarascon and C. Masquelier: Nat. Mater. Vol. 4 (2005), p.254.

[7] A. Yamada, S. C. Chung and K. Hinokuma: J. Electrochem. Soc. Vol. 148 (2001), p. A224.

[8] A. Yamada, S. Nishimura, H. Koizumi, R. Kanno, S. Seki, Y. Kobayashi, H. Miyashiro, J. Dodd, R. Yazami and B. Fultz: Mater. Res. Soc. Symp. Proc. (2007), p.972.


[9] C. Delacourt, P. Poizot, S. Levasseur et al.: Electrochem. Solid St. Vol. 9 (2006), p. A352.

[10] S. Yang, P. Zavalij and M. S. Whittingham: Electrochem. Commun. Vol. 3 (2001), p.505.

[11] G. Arnold, J. Garche, R. Hemmer, S. Strobele, C. Volger and M. Wohlffahrt-Mehrens: J. Power Sources Vol. 119-121 (2003) p.247.

[12] S. Franger, F. L. Cras, C. Bourbon, H. Rouault: J. Power Sources Vol. 119-121 (2003), p.252.

[13] K. S. Park, J. T. Son, H. T. Chung, S. J. Kim, C. H. Lee, K. T. Kang and H. G. Kim: Solid-State Commun. Vol. 129 (2004), p.311.

[14] F. Croce, A. D. Epifanio, J. Hassoun, A. Deptual and T. Olczac: Electrochem. Solid-State Lett. Vol. 5 (2002), p. A47.

[15] D. H. Kim and J. Kim: Electrochem. Solid-State Lett. Vol. 9 (2006), p. A439.

[16] D. H. Kim, J. S. Im, J. W. Kang, E. J. Kim, H. Y. Ahn and J. Kim: J. Nanosci. Nanotechno. Vol. 7 (2007), p.3949.

[17] D. H. Kim, J. W. Kang, I. O. Jung, J. S. Im, E. J. Kim, S. J. Song, J. S. Lee and J. Kim: J. Nanosci. Nanotechno. Vol. 8 (2008), p.5376.

[18] J. S. Lim, D. H. Kim, V. Mathew and J. Kim: Phys. Scr. Vol. T139 (2010), p.014060.