Synthesis and Characterization of Al2O3-SiC Nano Composite by Sol-Gel Method and the Effect of TiO2 on Sintering

Abstract:

Article Preview

In the present article, α-Al2O3 nano powder was synthesized by a simple aqueous sol–gel method by using AlCl3 as precursor. It was shown that the gel calcined at 1000°C, 1100 °C and 1200 °C resulted in the formation of a crystalline α-Al2O3 nano powder. In continue TEOS and saccharose was used to prepare SiO2 xerogels containing carbon nano particles. The conversion of the gel to β-SiC nano powders was accomplished by carbothermal reduction at 1500°C for 1 h in argon atmosphere. In second pace alumina matrix composites with nano particles of 5 vol% SiC were prepared with the addition of TiO2 as sintering aid and densified by pressureless sintering method at 1600°C and 1630°C for 2 h in nitrogen atmosphere. Green pellets were obtained by uniaxial pressing of 137 MPa. Maximum density (97.3%) was achieved at 1630°C. Vickers hardness was 16.5 GPa after sintering at 1630°C. Scanning electron microscopy revealed that the SiC particles were well distributed throughout the composite matrix. The precursors and the resultant powders were characterized by X-ray diffraction (XRD), thermal analysis (STA) and scanning electron microscopy (SEM).

Info:

Periodical:

Edited by:

Prof. Andreas Öchsner, Prof. Irina V. Belova and Prof. Graeme E. Murch

Pages:

7-19

DOI:

10.4028/www.scientific.net/JNanoR.13.7

Citation:

H. R. Rezaie et al., "Synthesis and Characterization of Al2O3-SiC Nano Composite by Sol-Gel Method and the Effect of TiO2 on Sintering", Journal of Nano Research, Vol. 13, pp. 7-19, 2011

Online since:

February 2011

Export:

Price:

$38.00

[1] B.C. Lippens, J.J. Steggerda, Physical and Chemical Aspect of Adsorbents and Catalysts, (Academic Press, New York 1970).

[2] Q.Z. Wen, D.M. Lipkin, D.R. Clarke, J. Am. Ceram. Soc. 81 (1998), p.3345.

[3] E.S. Astapova, N.S. Kostyukov, Atomnaya Energiya 78 (1995), p.336.

[4] X.S. Li, American Society of Mechanical Engineers, vol. 44, Materials Division (Publication), (1993), p.101.

[5] E. Dorre, H. Hubner, Alumina: Material Research and Engineering, (Springer-Verlag, New York 1984).

[6] E. Dorre, H. Hubner, Alumina: Processing, Properties and Applications, (Springer-Verlag, New York, 1984).

[7] P.A. Zielinski, R. Schulz, S. Kaliaguine, A. Van Neste, J. Mater. Res. 8 (1993), p.2985.

[8] L.L. Hench, J. Am. Ceram. Soc. 74 (1991), p.1487.

[9] K. Okada, A. Tanaka, S. Hayashi, K. Daimon, N. Otsuka, J. Mater. Res. 9 (1994), p.1709.

[10] C. Chang, A. Chen, J. Mater. Process. Technol. 140 (2003), p.373.

[11] Magnani G, Brillante A. Effect of the composition and sintering process on mechanical properties and residual stresses in zirconia–alumina composites. JEur Ceram Soc 25(15): (2005), p.3383–92.

DOI: 10.1016/j.jeurceramsoc.2004.09.025

[12] M. JOL, T. RI. Acta Mater 53(12), (2005), p.3345–57.

[13] M. Belmonte, MI. Nieto, MI. Osendi, P. Miranzo , J Eur Ceram Soc 26(7), (2006), p.1273–9.

[14] LP. Ferroni, G. Pezzotti , J Am Ceram Soc 85(8), (2002), p.2033–8.

[15] XD. Sun, Li. JG, SW. Guoet al., J Am Ceram Soc 88(6), (2005), p.1536–43.

[16] S. Taktak, MS. Baspinar, Mater Des 26(5), (2005), p.459–64.

[17] F.C. Zhang, H.H. Luo, T.S. Wang, M. Zhang, Y.N. Sun: Composites Science and Technology 68 (2008), p.3245–3250.

[18] L. Yung-Jen, C. Chih-Ming, Ceramics International 33 (2007), p.779–784.

[19] JH. Root, JD. Sullivan, BR. Marple, J Am Ceram Soc (1991), p.57–583.

[20] J. Li, Y. Pan, Ceram. Int. 31 (2005), p.587–591.

[21] M. Panchula, J. Ying, Nanostruct. Mater. 9 (1997), p.161–164.

[22] K. Kamata, T. Mochizuki, J. Am. Ceram. Soc. 68 (1995), p.193–194.

[23] T. Chou, T. Nieh, J. Am. Ceram. Soc. 74 (1991), p.2270–2279.

[24] Li. Jinwang, T. Jiemo, D. Limin: Journal of the European Ceramic Society 77 (2000), p.1853–1857.

[25] Y. K. Jeong, K. Niihara , Nanostruct. Mater. (1997), p.193–196.

[26] Y. K. Jeong, A. Nakahira, K. Niihara, J. Am. Ceram. Soc. 82(12), (1999), p.3609–3612.

[27] M.T. Chiou, Y. Tsai, J. Mater. Sci. 29 (1994), p.2378–2388.

[28] M. Shojaie-Bahaabad, E. Taheri-Nassaj, R. Naghizadeh, Ceram. Int. (2008), in press.

[29] A. Sedaghat, E. Taheri-Nassaj, R. Naghizadeh, J. Non. Cryst. Solid 352 (2006), p.2818–2828.

[30] A. W. Weimer, K. J Nilsen, G. A. Cochran, R. P. Roach, AIChE Journal 39, (1993), p.493–503.

[31] C.H. Dai, XP. Zhang, JS. Zhang, YJ. Yang, LH. Gao, J Am Ceram Soc (1997), 80(5), p.1274–1276.

[32] R.L. Coble, J. Appl. Phys. 32 (5), (1961), p.793–799.

[33] S.O. Bae, S. Baik, J. Am. Ceram. Soc. 77 (10), (1994), p.2499–2504.

[34] C.A. Bateman, S.J. Bennison, M.P. Harmer, J. Am. Ceram. Soc. 72 (7), (1989), p.1241–1244.

[35] U. Kolitsch, H. J. Seifert, T. Ludwig, F. Aldinger, J. Mater. Res., (1999), 14, p.447–455.

In order to see related information, you need to Login.