Delafossite-CuAlO2 Thin Films Prepared by Thermal Annealing


Article Preview

Transparent conducting oxides (TCOs) are well known and have been widely used for a long time in optoelectronics industries. The most popular TCOs have n-type characteristics. However p-type material is not well established and examined. The delafossite-CuAlO2 is one of the p-type TCOs. In this paper, amorphous Cu-Al-O films were deposited onto (100) p-type silicon substrate by magnetron sputtering. After that, the films were annealed at 800°C for 2 h in different partial oxygen levels ranging from 5*10-5 to 1 atm with N2, air, and O2. X-ray diffraction patterns showed that as-deposited films were amorphous. In addition, delafossite-CuAlO2 (R m and P63/mmc phase) appeared at 800°C in N2, but monoclinic-CuO and spinel-CuAl2O4 phases existed in air and O2. The formation of delafossite-CuAlO2 phase can be explained with thermodynamics. The optoelectronic properties of delafossite-CuAlO2 films were also measured. The direct optical bandgap was around at 3.3 eV, which is comparable with literature data. The electrical conductivity was obtained to be 6.8*10-3 S/cm. The hot-probe method employed to measure the electrical property of the films, which indicates that delafossite-CuAlO2 films have p-type characteristics.



Edited by:

Prof. Andreas Öchsner, Prof. Irina V. Belova and Prof. Graeme E. Murch




H. Y. Chen and M. W. Tsai, "Delafossite-CuAlO2 Thin Films Prepared by Thermal Annealing", Journal of Nano Research, Vol. 13, pp. 81-86, 2011

Online since:

February 2011




[1] A.N. Banerjee and K.K. Chattopadhyay, In: Reactive Sputtering, edited by D. Depla and S. Mahieu Springer Press, Berlin, (2008) p.413.

[2] M.A. Marquardt, N.A. Ashmore, and D.P. Cann: Thin Solid Films Vol. 496 (2006), p.146.

[3] A.N. Banerjee and K.K. Chattopadhyay: Prog. Cryst. Growth Charact. Mater. Vol. 50 (2005), p.52.

[4] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, and H. Hosono: Nature Vol. 389 (1997), p.939.


[5] R.E. Stauber, J.D. Perkins, P.A. Parilla, and D.S. Ginley: Electrochem. Solid-State Lett. Vol. 2 (1999), p.654.

[6] H. Yanagi, H. Kawazoe, A. Kudo, M. Yasukawa, and H. Hosono: J. Electroceram. Vol. 4 (2000), p.407.

[7] H. Yanagi, S.I. Inoue, K. Ueda, H. Kawazoe, H. Hosono, and N. Hamada: J. Appl. Phys. Vol. 88 (2000), p.4159.

[8] K. Tonooka, H. Bando, and Y. Aiura: Thin Solid Films Vol. 445 (2003), p.327.

[9] H. Gong, Y. Wang, and Y. Luo: Appl. Phys. Lett. Vol. 76 (2000), p.3959.

[10] A.N. Banerjee, R. Maity, and K. K. Chattopadhyay: Mater. Lett. Vol. 58 (2003), p.10.

[11] A.N. Banerjee, S. Kundoo, and K.K. Chattopadhyay: Thin Solid Films Vol. 440 (2003), p.5.

[12] A.N. Banerjee and K.K. Chattopadhyay: Appl. Surf. Sci. Vol. 225 (2004), p.243.

[13] A.N. Banerjee, R. Maity, P.K. Ghosh, and K.K. Chattopadhyay: Thin Solid Films Vol. 474 (2005), p.261.

[14] A.N. Banerjee, C. K. Ghosh, S. Das, and K. K. Chattopadhyay: Physica B Vol. 370 (2005), p.264.

[15] A.N. Banerjee, C. K. Ghosh, and K. K. Chattopadhyay: Sol. Energy Mater. Sol. Cells Vol. 89 (2005), p.75.

[16] A.N. Banerjee and K. K. Chattopadhyay: J. Appl. Phys. Vol. 97 (2005), p.084308.

[17] N. Tsuboi, Y. Takahashi, S. Kobayashi, H. Shimizu, K. Kato, and F. Kaneko: J. Phys. Chem. Solids Vol. 64 (2003), p.1671.

[18] N. Tsuboi, Y. Itoh, J. Ogata, S. Kobayashi, H. Shimizu, K. Kato, and F. Kaneko: Jpn. J. Appl. Phys Vol. 46 (2007), p.351.

[19] R.S. Yu, C.J. Lu, D.C. Tasi, S.C. Liang, and F.S. Shieu: J. Electrochem. Soc. Vol. 154 (2007), p. H838.

[20] B.H. Tseng and J. H. Shy: J. Phys. Chem. Solids Vol. 69 (2008), p.547.

[21] K.T. Jacob and C. B. Alcock: J. Am. Ceram. Soc. Vol. 58 (1975), p.192.

Fetching data from Crossref.
This may take some time to load.