New Synthesis Method to Obtain Pd Nano-Crystals

Abstract:

Article Preview

We report a new synthesis method to obtain palladium nano-crystals by sol-gel polymerized with acrylamide. From thermogravimetric analysis (TGA) studies, we found PdO and Pd compounds in the xerogel sample, at 550 °C, and over 900 °C we detected only metallic Pd. These results were corroborated by powder X-Ray Diffraction (XRD), High Resolution Scanning Electron Microscopy (HRSEM), and Transmission Electron Microscopy (TEM). XRD studies exhibit the lines from the tetragonal structure (PDF 41-1107) of PdO compound and from the cubic structure (PDF 46-1043) of Pd metallic. HRSEM micrographs show morphologies from the sample very sensitive to heat treatment. Finally, TEM images show crystals of ~8 nm in diameter.

Info:

Periodical:

Edited by:

Sergio Mejía

Pages:

93-103

DOI:

10.4028/www.scientific.net/JNanoR.14.93

Citation:

M. Ugalde et al., "New Synthesis Method to Obtain Pd Nano-Crystals", Journal of Nano Research, Vol. 14, pp. 93-103, 2011

Online since:

April 2011

Export:

Price:

$35.00

[1] Bonnemann, H, Richards, RM, Nanoscopic metal particles- Synthetic methods and potential applications, Eur. J. Inorg. Chem. 10 (2001) 2455-2480.

DOI: 10.1002/1099-0682(200109)2001:10<2455::aid-ejic2455>3.0.co;2-z

[2] Dutta, J., Hofmann, H., Hollenstein, C. and Hofmeister, H. Plasma-Produced Silicon Nanoparticle Growth and Crystallization Processes, in Nanoparticles and Nanostructured Films: Preparation, Characterization and Applications (ed. J. H. Fendler), Wiley-VCH Verlag GmbH, Weinheim, Germany (2007).

DOI: 10.1002/9783527612079.ch08

[3] Prashant V. Kamat, Photophysical, Photochemical and Photocatalytic Aspects of Metal Nanoparticles, J. Phys. Chem. B 106 (2002) 7729–7744.

DOI: 10.1021/jp0209289

[4] M. -C. Daniel, D. Astruc, Chem. Rev. 104 (2004).

[5] Karical R. Gopidas, James K. Whitesell, and Marye Anne Fox Synthesis, Characterization, and Catalytic Applications of a Palladium-Nanoparticle-Cored Dendrimer Nano Letters 3 (12) (2003) 1757–1760.

DOI: 10.1021/nl0348490

[6] D.J. Maxwell, J.R. Taylor, S. Nie, Self-Assembled nanoparticle probes for recognition and detection of biomolecules, J. Am. Chem. Soc. 124 (2002) 9606–9612.

DOI: 10.1021/ja025814p

[7] M.M. Oliveira, E.G. Castro, C.D. Canestraro, D. Zanchet, D. Ugarte, L.S. Roman A.J.G. Zarbin, A Simple Two-Phase Route to Silver Nanoparticles/Polyaniline Structures J. Phys. Chem. B, 110 (2006) 17063–17069.

DOI: 10.1021/jp060861f

[8] D.V. Leff, P.C. Ohara, J.R. Heath, W.M. Gelbart, Thermodynamic Control of Gold Nanocrystal Size: Experiment and Theory, J. Phys. Chem. 99-18 (1995), 7036–7041.

DOI: 10.1021/j100018a041

[9] S. Komarneni, R. Roy, E. Breval, M. Ollinen, Y. Suwa, Hydrothermal Route to Ultrafine Powders Utilizing Single and Di-Phasic Gels, Adv. Ceram. Mater. 1 (1986) 87.

[10] Z.X. Tang, C.M. Sorensen, K.J. Klabunde, G.C. Hadjipanayis, Preparation of manganese ferrite fine particles from aqueous solution, J. Colloid Interf. Sci. 146 (1991) 38-52.

DOI: 10.1016/0021-9797(91)90004-r

[11] J.H. Fendler, Atomic and molecular clusters in membrane mimetic chemistry, Chem. Rev. 87 (1987) 877–899.

DOI: 10.1021/cr00081a002

[12] A. Henglein, Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles, Chem. Rev. 89 (1989) 1861-1873.

DOI: 10.1021/cr00098a010

[13] K. Osseo-Asare, F.J. Arriagada, Synthesis of nanosize particles in reverse microemulsions, Ceram. Trans. 12 (1990) 3-16.

[14] M.P. Pileni, Reverse micelles as microreactors, J. Phys. Chem. 97 (1993) 6961.

[15] Pillai, P. Kumar, M.J. Hou, P. Ayyub, D.O. Shah, Preparation of nanoparticles of silver halides, superconductors and magnetic materials using water-in-oil microemulsions as nano-reactors, Adv. Colloid Interf. Sci. 55 (1995) 241.

DOI: 10.1016/0001-8686(94)00227-4

[16] Irina P. Beletskaya, Alexander N. Kashin, Alexander E. Litvinov, Vladimir S. Tyurin, Petr M. Valetsky, and Gerard van Koten Palladium Colloid Stabilized by Block Copolymer Micelles as an Efficient Catalyst for Reactions of C−C and C−Heteroatom Bond Formation, Organometallics 25 (1) (2006).

DOI: 10.1021/om050562x

[17] P. Fayet, L.Z. Wöste, Atoms, Molecules and Clusters, Phys. D 3 (1986) 177.

[18] R.W. Siegel, S. Ramasamy, H. Hahn, L. i Zongquan, L. u Ting, R. Gronsky, Synthesis, Characterization, and Properties of Nanophase TiO2, J. Mater. Res. 3 (1988) 1367.

DOI: 10.1557/jmr.1988.1367

[19] R. Uyeda, The morphology of fine metal crystallites, J. Cryst. Growth 24 (1974) 69-75.

[20] B. Fegley Jr, P. White, H.K. Bowen, Processing and characterization of ZrO2 and Y-doped ZrO2 powders, Am. Ceram. Soc. Bull. 64 (1985) 1115.

[21] M. Chen, Y. Feng, L. Wang, L. Zhang, J. -Y. Zhang, Study of palladium nanoparticles prepared from water-in-oil microemulsion, Colloid Surf. A: Physicochem. Eng. Asp. 281 (2006) 119–124.

[22] K.R. Gopidas, J.K. Whitesell, M.A. Fox, Synthesis, Characterization, and catalytic applications of a palladium-nanoparticle-cored dendrimer, Nano Lett. 3 (2003) 1757–1760.

DOI: 10.1021/nl0348490

[23] J. Liu, J. Alvarez, W. Ong, E. Román, A.E. Kaifer, Tuning the catalytic activity of cyclodextrin-modified palladium nanoparticles through host−guest binding interactions, Langmuir 17 (2001) 6762 6764.

DOI: 10.1021/la015563i

[24] Y. Li, M.A. El-Sayed, The effect of stabilizers on the catalytic activity and stability of Pd colloidal nanoparticles in the Suzuki reactions in aqueous solution, J. Phys. Chem. B 105 (2001) 8938–8943.

DOI: 10.1021/jp010904m

[25] J. Alvarez, J. Liu, E. Román, A.E. Kaifer, Water-soluble platinum and palladium nanoparticles modified with thiolated β-cyclodextrin, Chem. Commun. (2000) 1151–1152.

DOI: 10.1039/b002423f

[26] N.A. Dhas, A. Gedanken, J. Mater. Chem. 8 (1998) 445–450. Sonochemical preparation and properties of nanostructured palladium metallic clusters, N. Arul Dhas and A. Gedanken, J. Mater. Chem. 8 (1998) 445.

DOI: 10.1039/a706100e

[27] Y. Ozawa, Y. Tochihara, M. Nagai, S. Omi, PdO/Al2O3 in catalytic combustion of methane: stabilization and deactivation, Chem. Eng. Sci. 58 (2003) 671–677.

DOI: 10.1016/s0009-2509(02)00594-8

[28] J.G. McCarty, Kinetics of PdO combustion catalysis, Catal. Today 26 (1995) 283–293.

[29] T.L. Stuchinskaya, I.V. Kozhevnikov, Liquid-phase oxidation of alcohols with oxygen catalysed by modified palladium(II) oxide, Catal. Commun. 4 (2003) 417–422.

DOI: 10.1016/s1566-7367(03)00096-7

[30] P. Euzen, J-H.L. Gal, B.R. Rebours, G. Martin, Deactivation of palladium catalyst in catalytic combustion of methane, Catal. Today 47 (1999) 19–27.

DOI: 10.1016/s0920-5861(98)00280-6

[31] R. Gedye, F. Smith, K. Westaway, H. Ali, L. Baldisera, L. Laberge, J. Rousell, The use of microwave- ovens for rapid organic-synthesis Tetrahedron Lett. 27 (1986) 279–282.

DOI: 10.1016/s0040-4039(00)83996-9

[32] X. Xu,W. Yang, J. Liu, L. Lin, Synthesis of a High-Permeance NaA Zeolite Membrane by Microwave Heating, Adv. Mater. 12 (2000) 195–204.

DOI: 10.1002/(sici)1521-4095(200002)12:3<195::aid-adma195>3.0.co;2-e

[33] W. Yu,W. Tu, H. Liu, Synthesis of Nanoscale Platinum Colloids by Microwave Dielectric Heating, Langmuir 15 (1999) 6–9.

[34] Weixia Tu and Hanfan Liu W. Tu, H. Liu, Rapid synthesis of nanoscale colloidal metal clusters by microwave irradiation, J. Mater. Chem. 10 (2000) 2207–2211.

DOI: 10.1039/b002232m

[35] W. Tu, H. Liu, Continuous Synthesis of Colloidal Metal Nanoclusters by Microwave Irradiation, Chem. Mater. 12 (2000) 564–567.

DOI: 10.1021/cm990637l

[36] T.C. Deivaraj,W. Chen, J.Y. Lee, T. C Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol, J. Mater. Chem. 13 (2003), 2555–2560.

[37] F. -K. Liu, Y. -C. Chang, F.H. Ko, T. -C. Chu, Microwave rapid heating for the synthesis of gold nanorods, Mater. Lett. 58 (2004) 373.

[38] Y. -J. Zhu, X. -L. Hu, Microwave-assisted polythiol reduction method: a new solid–liquid route to fast preparation of silver nanowires, Mater. Lett. 58 (2004) 1517–1519.

DOI: 10.1016/j.matlet.2003.10.020

[39] B. He, J.J. Tan, K.Y. Liew, H. Liu, Synthesis of size controlled Ag nanoparticles, J. Mol. Catal. A: Chem. 221 (2004) 121–126.

[40] Y. Chen, B. He, H. Liu, Preparation and Characterization of Palladium Colloidal Nanoparticles by Thermal Decomposition of Palladium Acetate with Microwave Irradiation, J. Mater. Sci. Technol. 21(2) (2005) 187–190.

[41] M. Tsuji, M. Hashimoto, Y. Nishizawa, M. Kubokawa, T. Tsuji, Microwave-Assisted Synthesis of Metallic Nanostructures in Solution Chem. Eur. J. 11 (2005) 440–452.

DOI: 10.1002/chem.200400417

[42] Y. Luo, A simple microwave-based route for size-controlled preparation of colloidal Pt nanoparticles, Mater. Lett. 61 (2007) 1873–1875.

DOI: 10.1016/j.matlet.2006.07.166

[43] H. Wang , L. Gao, W. Li, Q. Li, Preparation of nanoscale α-Al2O3 powder by the polyacrylamide gel method, Nanostructure matter 11 (1999) 1263-1267.

DOI: 10.1016/s0965-9773(99)00417-1

[44] Herrera G., Chavira E., Jimenez-Mier J., Bañ̃os L., Guzmá́n J., Flores C., Synthesis and structural characterization of YVO3 prepared by sol–gel acrylamide polymerization and solid state reaction methods, J. Sol-Gel Sci. Technol. 46(1) (2008).

DOI: 10.1007/s10971-008-1703-6

[45] Sin A., Odier P., Gelation by Acrylamide, a Quasi-Universal Medium for the Synthesis of Fine Oxide Powders for Electroceramic Applications, Adv. Mater. 12(9) (2000) 649–652.

DOI: 10.1002/(sici)1521-4095(200005)12:9<649::aid-adma649>3.0.co;2-k

[46] Cheng-Chuan Wang, Dong-Hwang Chen, Ting-Chia Huang, Synthesis of palladium nanoparticles in water-in-oil microemulsions, Colloids and Surfaces A: Physicochem. Eng. Aspects 189 (2001) 145–154.

DOI: 10.1016/s0927-7757(01)00576-3

[47] Sang-Wook Kim, Jongnam Park, Youngjin Jang, Yunhee Chung, Sujin Hwang, and Taeghwan Hyeon Synthesis of Monodisperse Palladium Nanoparticles Nano Letters 3 (9) (2003) 1289–1291.

DOI: 10.1021/nl0343405

In order to see related information, you need to Login.