Nanomagnetic Arrays Formed with the Biomineralization Protein Mms6


Article Preview

Many Modern Technologies, such as High Density Data Storage, Require Monodispersed Magnetic Nanoparticles (MNPs), which Have a Consistent Magnetic Behavior, Specifically Immobilized onto a Patterned Surface. Current Methods for Synthesizing Uniform Mnps Require High Temperatures and Harsh Chemicals, which Is Not Environmentally Friendly. Also, the Particles Are Expensive to Make and Expensive to Pattern Using Conventional Lithography Methods. Magnetic Bacteria Are Able to Synthesize Consistent Mnps in Vivo Using Biomineralization Proteins inside Magnetosome Vesicles to Control Particle Size and Shape and Make Single Domain Mnps. Mms6 Is a Biomineralization Protein that Is Able to Template Cubo-Octahedral MNP Formation in Vitro. it Is Thought the N-Terminus Helps Integrate the Protein into the Magnetosome Membrane, and the C-Terminus Interacts with Magnetite during Nucleation and/or MNP Growth. by Selectively Attaching Mms6 to a Patterned Self Assembled Monolayer via the N-Terminus, Patterns of Uniform Magnetite Mnps Are Templated in Situ. this Also Requires Careful Selection of the Mineralization Solution Used to Mineralize the Patterned Mms6. here we Evaluate some Low Temperature (room Temperature to < 100°C) Methods of Magnetite Formation to Produce Monodispersed Magnetite Mnps onto Immobilized Mms6. Room Temperature Co-Precipitation (RTCP) Was Found to Be Unsuitable, as the Magnetite Does Not Form on the Immobilized Mms6, but Appears to Form Rapidly as Base Is Added. Partial Oxidation of Ferrous Hydroxide (POFH) Was Found to Be Able to Form Consistent Magnetite Mnps on the Immobilized Mms6, as the Reactants Gradually Mature to Form Magnetite over a few Hours (at 80°C) or a few Days (room Temperature). by Carefully Controlling the Type of Base Used, the Ratio of the Reactants and the Temperature and Duration of the POFH Mineralization Reaction, this System Was Optimized to Produce Consistent Mnps (340 ± 54 Nm, Coercivity 109 Oe) on the Immobilized Mms6, with Scarcely any Mineralization on the Anti-Biofouling Background. the Mnps Are Ferrimagnetic, and Appear to Be Exchange Coupled across Multiple Particles in MFM Measurements. the Specificity of this Method towards Precise Magnetite Mineralization under Relatively Mild Conditions May Be Adapted to Nanoscale Patterning of Multiple Biotemplated Materials, by Using other Biomineralization Proteins or Peptides. this Would Allow the Fabrication of Cheaper, More Environmentally Friendly Components for Devices of the Future.






J. M. Galloway et al., "Nanomagnetic Arrays Formed with the Biomineralization Protein Mms6", Journal of Nano Research, Vol. 17, pp. 127-146, 2012

Online since:

February 2012




[1] S.J. Lister, T. Thomson, J. Kohlbrecher, K. Takano, V. Venkataramana, S.J. Ray, M.P. Wismayer, M.A. d. Vries, H. Do, Y. Ikeda, S.L. Lee, Size-dependent reversal of grains in perpendicular magnetic recording media measured by small-angle polarized neutron scattering, Appl. Phys. Lett., 97 (2010).

DOI: 10.1063/1.3486680

[2] Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine, Phys. D: Appl. Phys., (2003) R167.

[3] S. Staniland, W. Williams, N. Telling, L. Van Der, A. Harrison, B. Ward, Controlled cobalt doping of magnetosomes in vivo, Nat. Nanotechnol., 3 (2008) 158-162.

DOI: 10.1038/nnano.2008.35

[4] D.J. Dunlop, Superparamagnetic and Single-Domain Threshold Sizes in Magnetite, J. Geophys. Res., 78 (1973) 1780-1793.

DOI: 10.1029/jb078i011p01780

[5] A.H. Lu, W. Schmidt, N. Matoussevitch, H. Bonnemann, B. Spliethoff, B. Tesche, E. Bill, W. Kiefer, F. Schuth, Nanoengineering of a magnetically separable hydrogenation catalyst, Angew. Chem. Int. Ed., 43 (2004) 4303-4306.

DOI: 10.1002/ange.200454222

[6] S.C. Tsang, V. Caps, I. Paraskevas, D. Chadwick, D. Thompsett, Magnetically separable, carbon-supported nanocatalysts for the manufacture of fine chemicals, Angew. Chem. Int. Ed., 43 (2004) 5645-5649.

DOI: 10.1002/anie.200460552

[7] C.C. Berry, A.S.G. Curtis, Functionalisation of magnetic nanoparticles for applications in biomedicine, Phys. D: Appl. Phys., 36 (2003) R198-R206.

[8] A.K. Gupta, M. Gupta, Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles, Biomaterials, 26 (2005) 1565-1573.

DOI: 10.1016/j.biomaterials.2004.05.022

[9] R. Weissleder, A. Bogdanov, E.A. Neuwelt, M. Papisov, Long-circulating iron oxides for MR imaging, Adv. Drug Delivery Rev., 16 (1995) 321-334.

DOI: 10.1016/0169-409x(95)00033-4

[10] S. Mornet, S. Vasseur, F. Grasset, P. Veverka, G. Goglio, A. Demourgues, J. Portier, E. Pollert, E. Duguet, Magnetic nanoparticle design for medical applications, Prog. Solid State Chem., 34 (2006) 237-247.

DOI: 10.1016/j.progsolidstchem.2005.11.010

[11] G. Reiss, A. Hütten, Magnetic nanoparticles: Applications beyond data storage, Nat. Mater., 4 (2005) 725-726.

DOI: 10.1038/nmat1494

[12] O. Hellwig, A. Berger, T. Thomson, E. Dobisz, Z.Z. Bandic, H. Yang, D.S. Kercher, E.E. Fullerton, Separating dipolar broadening from the intrinsic switching field distribution in perpendicular patterned media, Appl. Phys. Lett., 90 (2007) 162516.

DOI: 10.1063/1.2730744

[13] S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices, Science, 287 (2000) 1989-(1992).

DOI: 10.1126/science.287.5460.1989

[14] C. Desvaux, C. Amiens, P. Fejes, P. Renaud, M. Respaud, P. Lecante, E. Snoeck, B. Chaudret, Multimillimetre-large superlattices of air-stable iron-cobalt nanoparticles, Nat. Mater., 4 (2005) 750-753.

DOI: 10.1038/nmat1480

[15] S. Singamaneni, V.N. Bliznyuk, C. Binek, E.Y. Tsymbal, Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications, J. Mater. Chem., (2011) in press.

DOI: 10.1039/c1jm11845e

[16] J. -r. Choi, S.J. Oh, H. Ju, J. Cheon, Massive Fabrication of Free-Standing One-Dimensional Co/Pt Nanostructures and Modulation of Ferromagnetism via a Programmable Barcode Layer Effect, Nano Lett., 5 (2005) 2179-2183.

DOI: 10.1021/nl051190k

[17] B. Devouard, M. Posfai, X. Hua, D.A. Bazylinski, R.B. Frankel, P.R. Buseck, Magnetite from magnetotactic bacteria; size distributions and twinning, Am. Mineral., 83 (1998) 1387-1398.

DOI: 10.2138/am-1998-11-1228

[18] A. -H. Lu, E.L. Salabas, F. Schüth, Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application, Angew. Chem. Int. Ed., 46 (2007) 1222-1244.

DOI: 10.1002/anie.200602866

[19] J. Park, K. An, Y. Hwang, J. -G. Park, H. -J. Noh, J. -Y. Kim, J. -H. Park, N. -M. Hwang, T. Hyeon, Ultra-large-scale syntheses of monodisperse nanocrystals, Nat. Mater., 3 (2004) 891-895.

DOI: 10.1038/nmat1251

[20] F.X. Redl, C.T. Black, G.C. Papaefthymiou, R.L. Sandstrom, M. Yin, H. Zeng, C.B. Murray, S.P. O'Brien, Magnetic, Electronic, and Structural Characterization of Nonstoichiometric Iron Oxides at the Nanoscale, J. Am. Chem. Soc., 126 (2004).

DOI: 10.1021/ja046808r

[21] S. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang, G. Li, Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles, J. Am. Chem. Soc., 126 (2004) 273-279.

DOI: 10.1021/ja0380852

[22] A. Gorby, T.J. Beveridge, R.P. Blakemore, Characterisation of the Bacterial Magnetosome, J. Bacteriol., 170 (1988) 834-841.

DOI: 10.1128/jb.170.2.834-841.1988

[23] D. Faivre, D. Schüler, Magnetotactic Bacteria and Magnetosomes, Chem. Rev., 108 (2008) 4875-4898.

DOI: 10.1021/cr078258w

[24] T. Matsunaga, T. Sakaguchi, F. Tadakoro, Magnetite formation by a magnetic bacterium capable of growing aerobically, Appl. Microbiol. Biotechnol., 35 (1991) 651-655.

DOI: 10.1007/bf00169632

[25] T. Matsunaga, F. Tadokoro, N. Nakamura, Mass culture of magnetic bacteria and their application to flow type immunoassays, IEEE Trans. Magn., 26 (1990) 1557-1559.

DOI: 10.1109/20.104444

[26] T. Sakaguchi, J.G. Burgess, T. Matsunaga, Magnetite formation by a sulphate-reducing bacterium, Nature, 365 (1993) 47-49.

DOI: 10.1038/365047a0

[27] D.A. Bazylinski, R.B. Frankel, Magnetosome formation in prokaryotes, Nat. Rev. Microbiol., 2 (2004) 217-230.

DOI: 10.1038/nrmicro842

[28] A. Arakaki, H. Nakazawa, M. Nemoto, T. Mori, T. Matsunaga, Formation of magnetite by bacteria and its application, J. R. Soc. Interface., 5 (2008) 977-999.

DOI: 10.1098/rsif.2008.0170

[29] A. Arakaki, J. Webb, T. Matsunaga, A Novel Protein Tightly Bound to Bacterial Magnetic Particles in Magnetospirillum magneticum Strain AMB-1, J. Biol. Chem., 278 (2003) 8745-8750.

DOI: 10.1074/jbc.m211729200

[30] A. Arakaki, F. Masuda, Y. Amemiya, T. Tanaka, T. Matsunaga, Control of the morphology and size of magnetite particles with peptides mimicking the Mms6 protein from magnetotactic bacteria, J. Colloid Interface Sci., 343 (2010) 65-70.

DOI: 10.1016/j.jcis.2009.11.043

[31] M. Tanaka, E. Mazuyama, A. Arakaki, T. Matsunaga, Mms6 Protein Regulates Crystal Morphology during Nano-sized Magnetite Biomineralization in Vivo, J. Biol. Chem., 286 (2011) 6386-6392.

DOI: 10.1074/jbc.m110.183434

[32] J.M. Galloway, A. Arakaki, F. Masuda, T. Tanaka, T. Matsunaga, S.S. Staniland, Magnetic bacterial protein Mms6 controls morphology, crystallinity and magnetism of cobalt-doped magnetite nanoparticles in vitro, J. Mater. Chem., 21 (2011).

DOI: 10.1039/c1jm12003d

[33] Y. Amemiya, A. Arakaki, S.S. Staniland, T. Tanaka, T. Matsunaga, Controlled formation of magnetite crystal by partial oxidation of ferrous hydroxide in the presence of recombinant magnetotactic bacterial protein Mms6, Biomaterials, 28 (2007).

DOI: 10.1016/j.biomaterials.2007.07.051

[34] J. Kim, Y. Rheem, B. Yoo, Y. Chong, K.N. Bozhilov, D. Kim, M.J. Sadowsky, H. -G. Hur, N.V. Myung, Peptide-mediated shape- and size-tunable synthesis of gold nanostructures, Acta Biomater., 6 (2010) 2681-2689.

DOI: 10.1016/j.actbio.2010.01.019

[35] B. Wang, K. Chen, S. Jiang, F. Reincke, W. Tong, D. Wang, C. Gao, Chitosan-Mediated Synthesis of Gold Nanoparticles on Patterned Poly(dimethylsiloxane) Surfaces, Biomacromolecules, 7 (2006) 1203-1209.

DOI: 10.1021/bm060030f

[36] R.R. Naik, S.J. Stringer, G. Agarwal, S.E. Jones, M.O. Stone, Biomimetic synthesis and patterning of silver nanoparticles, Nat. Mater., 1 (2002) 169-172.

DOI: 10.1038/nmat758

[37] L.L. Brott, R.R. Naik, D.J. Pikas, S.M. Kirkpatrick, D.W. Tomlin, P.W. Whitlock, S.J. Clarson, M.O. Stone, Ultrafast holographic nanopatterning of biocatalytically formed silica, Nature, 413 (2001) 291-293.

DOI: 10.1038/35095031

[38] C. -Y. Chiu, Y. Li, Y. Huang, Size-controlled synthesis of Pd nanocrystals using a specific multifunctional peptide, Nanoscale, 2 (2010) 927-930.

DOI: 10.1039/c0nr00194e

[39] D.B. Pacardo, M. Sethi, S.E. Jones, R.R. Naik, M.R. Knecht, Biomimetic Synthesis of Pd Nanocatalysts for the Stille Coupling Reaction, ACS Nano, 3 (2009) 1288-1296.

DOI: 10.1021/nn9002709

[40] B.D. Reiss, C. Mao, D.J. Solis, K.S. Ryan, T. Thomson, A.M. Belcher, Biological Routes to Metal Alloy Ferromagnetic Nanostructures, Nano Lett., 4 (2004) 1127-1132.

DOI: 10.1021/nl049825n

[41] R.R. Naik, S.E. Jones, C.J. Murray, J.C. McAuliffe, R.A. Vaia, M.O. Stone, Peptide Templates for Nanoparticle Synthesis Derived from Polymerase Chain Reaction-Driven Phage Display, Adv. Funct. Mater., 14 (2004) 25-30.

DOI: 10.1002/adfm.200304501

[42] E. Estephan, M. -b. Saab, C. Larroque, M. Martin, F. Olsson, S. Lourdudoss, C. Gergely, Peptides for functionalization of InP semiconductors, J. Colloid Interface Sci., 337 (2009) 358-363.

DOI: 10.1016/j.jcis.2009.05.040

[43] S.R. Whaley, D.S. English, E.L. Hu, P.F. Barbara, A.M. Belcher, Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly, Nature, 405 (2000) 665-668.

[44] A. Arakaki, T. Matsunaga, F. Masuda, Iron oxide crystal formation on a substrate modified with Mms6 protein from magnetotactic bacteria, Mater. Res. Soc., 1187 (2009) KK03-08.

DOI: 10.1557/proc-1187-kk03-08

[45] T.T. Le, C.P. Wilde, N. Grossman, A.E.G. Cass, A simple method for controlled immobilization of proteins on modified SAMs, Phys. Chem. Chem. Phys., 13 (2011) 5271-5278.

DOI: 10.1039/c0cp02531c

[46] R.I.W. Osmond, W.C. Kett, S.E. Skett, D.R. Coombe, Protein-heparin interactions measured by BIAcore 2000 are affected by the method of heparin immobilization, Anal. Biochem., 310 (2002) 199-207.

DOI: 10.1016/s0003-2697(02)00396-2

[47] J.M. Galloway, J.P. Bramble, A.E. Rawlings, G. Burnell, S.D. Evans, S.S. Staniland, Biotemplated Magnetic Nanoparticle Arrays, Small, in press (2011).

DOI: 10.1002/smll.201290007

[48] F.W. Sturdier, Protein production by auto-induction in high density shaking cultures, Protein Expression Purif., 41 (2005) 207-234.

DOI: 10.1016/j.pep.2005.01.016

[49] J. Porath, J. Carlsson, I. Olsson, G. Belfrage, Metal chelate affinity chromatography, a new approach to protein fractionation, Nature, 258 (1975) 598-599.

DOI: 10.1038/258598a0

[50] R.B. Kapust, D.S. Waugh, Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused, Prot. Sci., 8 (1999) 1668-1674.

DOI: 10.1110/ps.8.8.1668

[51] R.B. Kapust, J. Tözsér, J.D. Fox, D.E. Anderson, S. Cherry, T.D. Copeland, D.S. Waugh, Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency, Prot. Eng., 14 (2001) 993-1000.

DOI: 10.1093/protein/14.12.993

[52] A. Kumar, H.A. Biebuyck, G.M. Whitesides, Patterning Self-Assembled Monolayers: Applications in Materials Science, Langmuir, 10 (1994) 1498-1511.

DOI: 10.1021/la00017a030

[53] K.L. Prime, G.M. Whitesides, Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): a model system using self-assembled monolayers, J. Am. Chem. Soc., 115 (1993) 10714-10721.

DOI: 10.1021/ja00076a032

[54] J. Lahiri, L. Isaacs, J. Tien, G.M. Whitesides, A Strategy for the Generation of Surfaces Presenting Ligands for Studies of Binding Based on an Active Ester as a Common Reactive Intermediate: A Surface Plasmon Resonance Study, Anal. Chem., 71 (1999).

DOI: 10.1021/ac980959t

[55] T. Sugimoto, E. Matijevic, Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels, J. Colloid Interface Sci., 74 (1980) 227-243.

DOI: 10.1016/0021-9797(80)90187-3

[56] A.E. Regazzoni, G.A. Urrutia, M.A. Blesa, A.J.G. Maroto, Some observations on the composition and morphology of synthetic magnetites obtained by different routes, J. Inorg. Nucl. Chem., 43 (1981) 1489-1493.

DOI: 10.1002/chin.198136037

[57] I. Horcas, R. Fernandez, J.M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, A.M. Baro, WSXM: A software for scanning probe microscopy and a tool for nanotechnology, Rev. Sci. Instrum., 78 (2007) 013705.

DOI: 10.1063/1.2432410

[58] H. Schägger, Tricine-SDS-PAGE, Nat. Protocols, 1 (2006) 16-22.

[59] J. Lahiri, E. Ostuni, G.M. Whitesides, Patterning Ligands on Reactive SAMs by Microcontact Printing, Langmuir, 15 (1999) 2055-(2060).

DOI: 10.1021/la9811970

[60] R.G. Nuzzo, D.L. Allara, Adsorption of bifunctional organic disulfides on gold surfaces, J. Am. Chem. Soc., 105 (1983) 4481-4483.

DOI: 10.1021/ja00351a063

[61] A. Ulman, Formation and Structure of Self-Assembled Monolayers, Chem. Rev., 96 (1996) 1533-1554.

[62] Y. Xia, G.M. Whitesides, Soft Lithography, Angew. Chem. Int. Ed., 37 (1998) 550-575.

[63] F. Rusmini, Z. Zhong, J. Feijen, Protein Immobilization Strategies for Protein Biochips, Biomacromolecules, 8 (2007) 1775-1789.

DOI: 10.1021/bm061197b

[64] R.M. Cornell, U. Schwertman, The iron oxides : structure, properties, reactions, occurences and uses, 2nd ed. ed, Wiley-VCH, Weinheim :, (2003).

[65] P.S. Sidhu, R.J. Gilkes, A.M. Posner, The synthesis and some properties of Co, Ni, Zn, Cu, Mn and Cd substituted magnetites, J. Inorg. Nucl. Chem., 40 (1978) 429-435.

DOI: 10.1016/0022-1902(78)80418-7

[66] D. Kim, N. Lee, M. Park, B.H. Kim, K. An, T. Hyeon, Synthesis of Uniform Ferrimagnetic Magnetite Nanocubes, J. Am. Chem. Soc., 131 (2009) 454-455.

DOI: 10.1021/ja8086906

Fetching data from Crossref.
This may take some time to load.