Arsenic Sulphide As4S4 Nanoparticles: Physico-Chemical Properties and Anticancer Effects


Article Preview

In this study, arsenic sulphide As4S4 nanoparticles have been prepared, by high-energy wet milling, in the presence of sodium dodecylsulphate, which acts a surfactant. Solid state properties of the nanoparticles were characterised by XRD, Raman scattering, specific surface area and particle size distribution. Changes in surface areas of the particles, in the 0.2 - 5.4 m2 g-1 range, and nanosize distributions, in the 100 - 250 nm range, characterise the surface and morphological properties of nanorealgar. Raman scattering revealed various species in the milled sample that indicate a disproportionate reaction (3As4S4 → 4As2S3 + 4As) occurring as a consequence of milling. Anticancer effects, of the milled species, were confirmed for the human multiple myeloma U266 and OPM1 cell lines. Dissolution experiments in simulated gastric fluid show a possibility for the application of the realgar nanoparticles as an oral dose in future arsenic drug cancer treatments.



Journal of Nano Research (Volumes 18-19)




P. Baláz et al., "Arsenic Sulphide As4S4 Nanoparticles: Physico-Chemical Properties and Anticancer Effects", Journal of Nano Research, Vols. 18-19, pp. 149-155, 2012

Online since:

July 2012




[1] P. Bonazzi and L. Bindi: Z. Kristallogr. Vol. 223 (2008), p.132.

[2] M. Popescu, J. Non-Cryst. Solids 352 (2006), p.887.

[3] P.J. Dilda and P.J. Hogg: Can. Treat. Rev. 33 (2007), p.542.

[4] J. Liu, Y. Lu, Q. Wu, G.A. Goyer and M.P. Waalkes: J. Pharm. Exper. Therap. Vol. 326 (2008), p.363.

[5] P. Baláž: Mechanochemistry in Nanoscience and Materials Engineering (Springer, Germany 2008).

[6] E. Merisko-Liversidge, G.G. Liversidge and E.R. Cooper: Europ. J. Pharm. Sci. Vol. 18 (2003), p.113.

[7] P. Baláž, M. Fabián, M. Pastorek, D. Cholujová and J. Sedlák: Mat. Lett. Vol. 63 (2009), p.1542.

[8] E. Gaffet, F. Bernard, J.C. Niepce, F. Charlat, Ch. Gras, G. Le Caër, J.L. Guichard, P. Delcroix, A. Mocellin, O. Tillement: J. Mater. Chem. 9 (1999), p.305.


[9] C. Suryanarayana: Progr. Mater. Sci. 46 (2001), p.1.

[10] L. Takacs: Progr. Mater. Sci. 47 (2002), p.355.

[11] F. Miani, F. Maurigh, in: Dekker Encyklopedia of Nanoscience and Nanotechnology, edited by J.A. Schwarz, C.J. Contescu and K. Putyera, Marcel Dekker, New York (2004), p.1787.

[12] T.P. Shakhtshneider: Sol. St. Ionics 101-103 (1997), p.851.

[13] V.V. Boldyrev: J. Mater. Sci. 39 (2004), p.5117.

[14] J.Z. Wu and P.C. Ho: Europ. J. Pharm. Sci. 29 (2006), p.35.

[15] D. Hörter, J.B. Dressman: Adv. Dr. Del. Rev. 46 (2001), p.75.

[16] T. Mosmann: J. Immun. Meth. 65 (1983), p.55.

[17] D. Bartkowiak, S. Hogner, H. Baust, W. Nothdurft, E.M. Rottinger: Cytom. 37 (1999), p.191.

[18] A.Z. Juhász, L. Opoczky: Mechanical Activation of Minerals by Grinding: Pulverizing and Morphology of Particles (Ellis Horwood, Chichester 1990).

[19] R. Forneris: Am. Mineral. 54 (1969), p.1062.

[20] P. Bonazzi, S. Menchetti, G. Pratesi, M. Muniz-Miranda, G. Sbrana: Am. Mineral. 81 (1996), p.874.

[21] P. Baláž, W.S. Choi and E. Dutková: J. Phys. Chem. Sol. Vol. 68 (2007), p.1178.

[22] P. Naumov, P. Makreski, G. Jovanovski: Inorg. Chem. 46 (2007), p.10624.

[23] P. Naumov, P. Makreski, G. Petruševski, T. Runčevski, G. Jovanovski: J. Am. Chem. Soc. 132 (2010), p.11398.

[24] Z.Y. Wang: Can. Chem. Pharm. 48 (Suppl. 1) (2001), p.72.

[25] F. Kessisoglou, S. Pannai, Y. Wu: Adv. Dr. Del. Sys. 59 (2007), p.631.

[26] S.Y. Kwan, S.K. Tsui, T.O. Man: Anal. Lett. 34 (2001), p.1431.

[27] X.H. Wu, D.H. Sun: Anal. Chim. Acta 453 (2002), p.311.

Fetching data from Crossref.
This may take some time to load.