Effect of Hydrostatic Pressure on Nano Crystalline Materials Behavior


Article Preview

One of the Remarkable Differences between Mechanical Behavior of Nano-Crystalline and Coarse-Grained Materials Is Tension Compression Asymmetry that Has Been Experienced in Nano-Crystalline Materials. In this Paper a Constitutive Model Is Proposed which Considers Dominant Operative Deformation Mechanisms of Nano-Crystalline Materials Including Grain Interior Plasticity, Grain Boundary Diffusion and Grain Boundary Sliding. A Grain Size Dependent Taylor Type Polycrystalline Model Is Used to Predict Grain Interior Deformation. Three Dimensional Relationships Are Proposed to Relate Macro Stress and Strain Rate in Grain Boundary Mechanisms. The Effect of Normal Stress Acting on a Boundary Is Also Considered in Grain Boundary Sliding, Therefore, Effect of Hydrostatic Pressure Is Included in the Model. The Proposed Model Is Used to Predict Strength of Nano-Crystalline Copper in both Tension and Compression and Good Results Are Obtained Comparing with Experimental Data. The Model Also Predicts Various Behaviors of Nano-Crystalline Materials Observed in Literature's Experiments and Molecular Dynamic Simulations. Some Examples Are: Inverse Hall-Petch Effect; Tension and Compression Maximum Strength Grain Sizes; Tension Compression Asymmetry and its Change Vs. Grain Size and Strain Rate and the Yield Locus Shape.



Journal of Nano Research (Volumes 18-19)




R. Jafari Nedoushan and M. Farzin, "Effect of Hydrostatic Pressure on Nano Crystalline Materials Behavior", Journal of Nano Research, Vols. 18-19, pp. 27-42, 2012

Online since:

July 2012




[1] R.J. Asaro, S. Suresh, Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins, Acta Mater. 53 (2005) 3369-3382.

DOI: https://doi.org/10.1016/j.actamat.2005.03.047

[2] S. Cheng, E. Ma, Y.M. Wang, L.J. Kecskes, K.M. Youssef, C.C. Koch, U.P. Trociewitz, K. Han, Tensile properties of in situ consolidated nanocrystalline Cu, Acta Mater. 53 (2005) 1521-1533.

DOI: https://doi.org/10.1016/j.actamat.2004.12.005

[3] Z. Jiang, X. Liu, G. Li, Q. Jiang,J. Lian, Strain rate sensitivity of a nanocrystalline Cu synthesized by electric brush plating, Appl. Phys. Lett. 88 (2006) 143115-143115-3.

DOI: https://doi.org/10.1063/1.2193467

[4] Z. Jiang, H. Zhang, C. Gu, Q. Jiang, J. Lian, Deformation mechanism transition caused by strain rate in a pulse electric brush-plated nanocrystalline Cu, Appl. Phys. 104 (2008) 053505-053510.

DOI: https://doi.org/10.1063/1.2973200

[5] H. Van Swygenhoven, P.M. Derlet, A.G. Froseth, Nucleation and propagation of dislocations in nanocrystalline fcc metals, Acta Mater. 54 (2006) 1975-(1983).

DOI: https://doi.org/10.1016/j.actamat.2005.12.026

[6] G. Wang, J. Lian, Z. Jiang, L. Qin, Q. Jiang, Compressive creep behavior of an electric brush-plated nanocrystalline Cu at room temperature, Appl. Phys. 106 (2009) 086105.

DOI: https://doi.org/10.1063/1.3247583

[7] V.Y. Gertsman, M. Hoffmann, H. Gleiter, R. Birringer, The study of grain size dependence of yield stress of copper for a wide grain size range, Acta Metall. 42 (1994) 3539-3544.

DOI: https://doi.org/10.1016/0956-7151(94)90486-3

[8] A. Giga, Y. Kimoto, Y. Takigawa,K. Higashi, Demonstration of an inverse Hall-Petch relationship in electrodeposited nanocrystalline Ni-W alloys through tensile testing, Scripta Mater. 55 (2006) 143-146.

DOI: https://doi.org/10.1016/j.scriptamat.2006.03.047

[9] C.A. Schuh, T.G. Nieh, T. Yamasaki, Hall-Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel, Scripta Mater. 46 (2002) 735-740.

DOI: https://doi.org/10.1016/s1359-6462(02)00062-3

[10] H. Luo, L. Shaw, L.C. Zhang, D. Miracle, On tension/compression asymmetry of an extruded nanocrystalline Al-Fe-Cr-Ti alloy, Mat. Sci. Eng. A. 409 (2005) 249-256.

DOI: https://doi.org/10.1016/j.msea.2005.06.075

[11] S. Qu, C.X. Huang, Y.L. Gao, G. Yang, S.D. Wu, Q.S. Zang, Z.F. Zhang, Tensile and compressive properties of AISI 304L stainless steel subjected to equal channel angular pressing, Mat. Sci. Eng. A. 475 (2008) 207-216.

DOI: https://doi.org/10.1016/j.msea.2007.04.111

[12] P.G. Sanders, C.J. Youngdahl, J.R. Weertman, The strength of nanocrystalline metals with and without flaws, Mat. Sci. Eng. A. 234-236 (1997) 77-82.

DOI: https://doi.org/10.1016/s0921-5093(97)00185-8

[13] B.E. Schuster, Q. Wei, H. Zhang, K.T. Ramesh, Microcompression of nanocrystalline nickel, Appl. Phys. Lett. 88 (2006) 103112-103115.

DOI: https://doi.org/10.1063/1.2183814

[14] H. Gleiter, Nanocrystalline materials, Prog. Mater. Sci. 33 (1989) 223-315.

[15] Y.M. Wang, E. Ma, Strain hardening, strain rate sensitivity, and ductility of nanostructured metals, Mat. Sci. Eng. A. 375-377 (2004) 46-52.

DOI: https://doi.org/10.1016/j.msea.2003.10.214

[16] A.M. Dongare, A.M. Rajendran, B. LaMattina, M.A. Zikry, D.W. Brenner, Tension-compression asymmetry in nanocrystalline Cu: High strain rate vs. quasi-static deformation, Comp. Mater. Sci. 49 (2010) 260-265.

DOI: https://doi.org/10.1016/j.commatsci.2010.05.004

[17] A.C. Lund, C.A. Schuh, Strength asymmetry in nanocrystalline metals under multiaxial loading, Acta Mater. 53 (2005) 3193-3205.

DOI: https://doi.org/10.1016/j.actamat.2005.03.023

[18] Y. Zhang, H. Huang, S.N. Atluri, Strength asymmetry of twinned copper nanowires under tension and compression, Comp. Model. Eng. 35 (2008) 215-225.

[19] E.M. Tallef, L.G. Hector, J.R. Bradley, R. Verma, P.E. Krajewski, The effect of stress state on high-temperature deformation of fine-grained aluminum-magnesium alloy AA5083 sheet, Acta Mater. 57 (2009) 2812-2822.

DOI: https://doi.org/10.1016/j.actamat.2009.02.036

[20] J. Wolfenstine, G. GonzAlez-Doncel, O.D. Sherby, Tension versus compression superplastic behavior of a Mg-9 wt% Li-5 wt% B4C composite, Mater‏. Lett. 15 (1992) 305-308.

DOI: https://doi.org/10.1016/0167-577x(92)90090-7

[21] A.M. Dongare, A.M. Rajendran, B. Lamattina, D.W. Brenner, M.A. Zikry, Atomic-Scale Study of Plastic-Yield Criterion in Nanocrystalline Cu at High Strain Rates, Metall. Mater. Trans. A. 41 (2009) 523-531.

DOI: https://doi.org/10.1007/s11661-009-0113-x

[22] B. Jiang, G.J. Weng, A theory of compressive yield strength of nano-grained ceramics, Int. J. Plasticity. 20 (2004) 2007-(2026).

[23] E. Gürses, T. El Sayed, On tension-compression asymmetry in ultrafine-grained and nanocrystalline metals, Comp. Mater. Sci. 50 (2010) 639-644.

DOI: https://doi.org/10.1016/j.commatsci.2010.09.028

[24] E. Gürses, T. El Sayed, A constitutive model of nanocrystalline metals based on competing grain boundary and grain interior deformation mechanisms, Mater‏. Lett. 65 (2011) 3391-3395.

DOI: https://doi.org/10.1016/j.matlet.2011.07.039

[25] Y. Wei, A.F. Bower, H. Gao, Enhanced strain-rate sensitivity in fcc nanocrystals due to grain-boundary diffusion and sliding, Acta Mater. 56 (2008) 1741-1752.

DOI: https://doi.org/10.1016/j.actamat.2007.12.028

[26] B. Zhu, R.J. Asaro, P. Krysl,R. Bailey, Transition of deformation mechanisms and its connection to grain size distribution in nanocrystalline metals, Acta Materialia. 53 (2005) 4825-4838.

DOI: https://doi.org/10.1016/j.actamat.2005.06.033

[27] P. Valentini, T. Dumitrica, Microscopic theory for nanoparticle-surface collisions in crystalline silicon, Phys. Rev. B. 75 (2007) 224106-224117.

DOI: https://doi.org/10.1103/physrevb.76.179901

[28] P. Valentini, W.W. Gerberich, T. Dumitrica, Phase-Transition Plasticity Response in Uniaxially Compressed Silicon Nanospheres, Phys. Rev. Lett. 99 (2007) 175701-175705.

DOI: https://doi.org/10.1103/physrevlett.99.175701

[29] M. Farzin, R. Jafari, M. Mashayekhi, Simulation of hot sheet metal forming processes based on a micro-structural constitutive model, Key Eng. Mat. 473 (2011) 556-563.

DOI: https://doi.org/10.4028/www.scientific.net/kem.473.556

[30] M. Farzin, R. Jafari, M. Mashayekhi, Simulation of super-plastic forming based on a micro-structural constitutive model and considering grain growth, Key Eng. Mat. 473 (2011) 610-617.

DOI: https://doi.org/10.4028/www.scientific.net/kem.473.610

[31] R. Jafari Nedoushan, M. Farzin, M. Mashayekhi, Effects of strain rate and grain size on behavior of nano crystalline materials, Accepted in J. Nano Res.

DOI: https://doi.org/10.4028/www.scientific.net/jnanor.17.35

[32] C. Herring, Diffusional viscosity of a polycrystalline solid, J. Appl. Phys. 21 (1950) 437-445.

[33] Y.J. Wei, L. Anand, Grain-boundary sliding and separation in polycrystalline metals: application to nanocrystalline fcc metals, J. Mech. Phys. Solids. 52 (2004) 2587-2616.

DOI: https://doi.org/10.1016/j.jmps.2004.04.006

[34] R.J. Asaro, A. Needleman, Overview no. 42 Texture development and strain hardening in rate dependent polycrystals, Acta metall. 33 (1985) 923-953.

DOI: https://doi.org/10.1016/0001-6160(85)90188-9

[35] D. Wolf, V. Yamakov, S.R. Phillpot, A. Mukherjee, H. Gleiter, Deformation of nanocrystalline materials by molecular-dynamics simulation: relationship to experiments?, Acta Mater. 53 (2005) 1-40.

DOI: https://doi.org/10.1016/j.actamat.2004.08.045

[36] K. Zhang, X. Geng, J. Li, R. Hu, On the tension necking of copper single crystal specimen under slip deformation mechanism, Sci. China. Ser. E. 50 (2007) 308-318.

DOI: https://doi.org/10.1007/s11431-007-0038-9

Fetching data from Crossref.
This may take some time to load.