Hydrothermal Synthesis of CuS Nanostructures with Different Morphology


Article Preview

Cus Nanostructures Have Been Successfully Prepared from Copper Chloride with Two Different Sulfur Sources Like Thiourea and Sodium Thiosulphate by Hydrothermal Route at 150oC. The Growth of Cus Nanostructures Were Investigated for Different Reaction Time Periods of 5 Hrs and 24 Hrs Respectively Using Water as Solvent. the as-Synthesized Cus Nanostructures Are Characterized by X-Ray Diffraction (XRD) and Field-Emission Scanning Electron Microscopy (FE-SEM). XRD Pattern Indicates that the Prepared Cus Nanomaterials Are in Pure Hexagonal Phase. Results Show that Cus Nanomaterials with Different Hierarchical Structures Like Urchins, Nanoplates Etc,. Were Obtained at Different Experimental Conditions. A Systematic Investigation of the Final End Products Has Been Done to Elucidate the Formation Mechanism at Different Experimental Parameters. The Optical Properties of the Cus Structures Were Studied by UV-Vis Absorption Analysis, which Showed Broad Absorption in the Visible Region. The Optical Band Gap of the Cus Nanomaterials Were Found as 2.2 Ev and 2.18 Ev for Different Sulfur Sources.



Journal of Nano Research (Volumes 18-19)




M. Saranya and A. Nirmala Grace, "Hydrothermal Synthesis of CuS Nanostructures with Different Morphology", Journal of Nano Research, Vols. 18-19, pp. 43-51, 2012

Online since:

July 2012




[1] G.Y. Chen, B. Deng, G.B. Cai, W.F. Dong, W.X. Zhang, A.W. Xu, Cryst. Growth Des. 8 (2008) 2137-2143.

[2] E. Godocikova, P. Balaz, I.M. Criado, C. Real, E. Gock, Thermochim. Acta 440 (2006) 19–22.

[3] L.Z. Pei, J.F. Wang, X.X. Tao, S.B. Wang, Y.P. Dong, C.G. Fan, Q.F. Zhang, Mater. Charact. 62 (2011) 354-359.

[4] F. Li, W.T. Bi, T. Kong, Q.H. Qin, Cryst. Res. Technol. 44 (2009) 729–735.

[5] Z.G. Cheng, S.Z. Wang, Q. Wang, B.Y. Geng, Cryst. Eng. Comm. 12 (2010) 144–149.

[6] Y. Zhang, Z.P. Qiao, X.M. Chen, J. Mater. Chem. 12 (2002) 2747–2748.

[7] G.Z. Mao, Nano Lett. 4 (2004) 249–252.

[8] Y. Han, Y. Wang, W. Gao, Y. Wang, L. Jiao, H. Yuan, S. Liu, Powder Technol. 212 (2011) 64–68.

[9] S.K. Maji, N. Mukherjee, A.K. Dutta, D.N. Srivastava, P. Paul, B. Karmakar, A. Mondal, B. Adhikary, Mater. Chem. Phys. 130 (2011) 392–397.

[10] L. Andronic, L. Isac, A. Duta, J. Photochem. Photobiol. A 221 (2011) 30–37.

[11] K. Mageshwari, S.S. Mali, T. Hemalatha, R. Sathyamoorthy, P.S. Patil, Prog. Solid State Chem. 39 (2011) 108-113.

[12] Z. Chen, W. Zhang, Z. Yang, J. Cryst. Growth 311 (2009) 3347–3351.

[13] M. Basu, A.K. Sinha, M. Pradhan, S. Sarkar, T.S. Pal, Environ. Sci. Technol. 44 (2010) 6313–6318.

[14] X.L. Yu, Y. Wang, H.L.W. Chan, C.B. Cao, Microporous Mesoporous Mater. 118 (2009) 423–426.

[15] X. L. Liu, Y.J. Zhu, Mater. Lett. 65 (2011) 1089–1091.

[16] T.Y. Ding, M.S. Wang, S.P. Guo, G.C. Guo, J.S. Huang, Mater. Lett. 62 (2008) 4529–4531.

[17] P. Roy, S.K. Srivasta, Mater. Lett. 61 (2007) 1693–1697.

[18] Z. Yao, X. Zhu, C. Wu, X. Zhang, Y. Xie, Cryst. Growth Des. 7 (2007) 1256-1261.

[19] Z.H. Yang, D.P. Zhang, W.X. Zhang, M. Chen, J. Phys. Chem. Solids 70 (2009) 840–846.

[20] L. Xua, X. Chena, L. Mab, F. Gao, Colloids Surf. A 349 (2009) 69–73.

[21] H.M. Ji, J.M. Cao, J. Feng, X. Chang, X.J. Ma, J.S. Liu, M.B. Zheng, Mater. Lett. 9 (2005) 3169.

[22] K.B. Tang, D. Chen, Y.F. Liu, G.Z. Shen, H.G. Zheng, Y.T. Qian, J. Cryst. Growth 263 (2004) 232–236.

[23] L. Gao, E.B. Wang, S.Y. Lian, Z.H. Kang, Y. Lan, D. Wu, Solid State Commun. 130 (2004) 309.

[24] Y. Liu, D. Qin, L. Wang, Y. Cao, Mater. Chem. Phys. 102 (2007) 201–206.

[25] X. Jiang, Y. Xie, J. Lu, W. He, L. Zhu, Y.T. Qian, J. Mater. Chem. 10 (2000) 2193.

[26] C. Jiang, W. Zhang, G. Zou, L. Xu, W. Yu, Y. Qian, Mater. Lett. 59 (2005) 1008– 1011.

[27] H. Zhu, X. Ji, D. Yang, Y. Ji, H. Zhang, Microporous Mesoporous Mater. 80 (2005) 153–156.

[28] A.M. Qin, Y.P. Fang, H.D. Ou, H.Q. Liu, C.Y. Su, Cryst. Growth Des. 5 (2005) 855-860.

[29] H.C. Zeng, Curr. Nanosci. 3 (2007) 177-181.

[30] L. Chen, W. Yu, Y. Li, Powder Technol. 191 (2009) 52–54.

[31] L. Zhu, Y. Xie, X. Zheng, X. Liu, G. Zhou, J. Cryst. Growth 260 (2004) 494–499.

[32] Q. Lu, F. Gao, D. Zhao, Nano Lett. 2 (2002) 725.

[33] R.H. K, J.S. Kulkarni, S.K. Haram, Chem. Mater. 13 (2001) 1789.

[34] C. Yang, H. Fan, Y. Xi, J. Chen, Z. Li, Appl. Surf. Sci. 254 (2008) 2685–2689.

Fetching data from Crossref.
This may take some time to load.