Study on Vacancy Related Defects of CdS Nanoparticles by Heat Treatment

Abstract:

Article Preview

In this Work a Method of Incorporating Anion or Cation Vacancy during Synthesis Stage of CdS Nanoparticles to Induce Defect Level Emission Is Presented. Further the Influence of Temperature on this Vacancy Related Defects Is Also Studied. the as-Prepared Samples with Co-Precipitation Technique Were Heat Treated with Different Time Intervals at a Constant Temperature of 200 °C. From UV-Visible Absorption Spectra, the Band Gap of both the as-Prepared and Heat Treated Samples Are Calculated to Be 3.51 Ev Indicating that there Are No Significant Changes in the Size of Nanoparticles. The Photoluminescence Spectra of both Samples Showed Emission Bands Corresponding to Band Edge and Defect Levels. Further from the Spectra, it Was Observed that the Intensity of Band Edge Luminescence Decreases with Increase of Heat Treatment Duration. This Is due to the Fact that Induced Defects Have Reached the Surface of Nanoparticles.

Info:

Periodical:

Journal of Nano Research (Volumes 18-19)

Pages:

53-61

DOI:

10.4028/www.scientific.net/JNanoR.18-19.53

Citation:

N.S. Roshima et al., "Study on Vacancy Related Defects of CdS Nanoparticles by Heat Treatment", Journal of Nano Research, Vols. 18-19, pp. 53-61, 2012

Online since:

July 2012

Export:

Price:

$35.00

[1] W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Hybrid nanorod-polymer solar cells, Science 295 (5564) (2002) 2425–2427.

DOI: 10.1126/science.1069156

[2] M. G. Burt, J. H. Harding, A. M. Stoneham, Introduction, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Phys. Engin. Sci. 361 (1803) (2003) 225–227.

[3] R. Frerichs, The cadmium sulfide X-Ray detector, J. Appl. Phys. 21 (4) (1950) 312–318.

[4] L. Brus, Quantum crystallites and nonlinear optics, Applied Physics A: Mater. Sci. Process. 53 (6) (1991) 465–474.

[5] I.O. Oladeji, L. Chow, C.S. Ferekides, V. Viswanathan, Z. Zhao, Metal/CdTe/CdS/ Cd1−xZnxS/TCO/glass: A new CdTe thin film solar cell structure, Solar Energy Materials and Solar Cells 61 (2) (2000) 203–211.

DOI: 10.1016/s0927-0248(99)00114-2

[6] K. Abu-Salah, S. A. Alrokyan, M. N. Khan, A. A. Ansari, Nanomaterials as analytical tools for genosensors, Sensors 10 (1) (2010) 963–993.

DOI: 10.3390/s100100963

[7] X. Zhao, W. Li, L. Jiang, W. Zhou, Q. Xin, B. Yi, G. Sun, Multi-wall carbon nanotube supported Pt-Sn nanoparticles as an anode catalyst for the direct ethanol fuel cell, Carbon 42 (15) (2004) 3263–3265.

DOI: 10.1016/j.carbon.2004.07.031

[8] S. Rengaraj, S. H. Jee, S. Venkataraj, Y. Kim, S. Vijayalakshmi, E. Repo, A. Koistinen, Sillanp, Mika, CdS microspheres composed of nanocrystals and their photocatalytic activity, JNN 11 (3) (2011) 2090–(2099).

DOI: 10.1166/jnn.2011.3760

[9] C. Y. Zhang, H. -C. Yeh, M. T. Kuroki, T. -H. Wang, Single-quantum-dot-based DNA nanosensor, Nat. Mater. 4 (11) (2005) 826–831, 10. 1038/nmat1508.

DOI: 10.1038/nmat1508

[10] J. J. Ramsden, M. Gratzel, Photoluminescence of small cadmium sulphide particles, Journal of the Chemical Society, Faraday Transactions 1: Phys. Chem. Cond. Phases 80 (4) (1984) 919–933.

DOI: 10.1039/f19848000919

[11] R. Bandaranayake, G. Wen, J. Lin, H. Jiang, C. Sorensen, Structural phase behavior in II-VI semiconductor nanoparticles, Appl. Phys. Lett. 67 (6) (1995) 831–834.

[12] V. Sivasubramanian, A. K. Arora, M. Premila, C. S. Sundar, V. S. Sastry, Optical properties of CdS nanoparticles upon annealing, Physica E: Low-dimensional Systems and Nanostructures 31 (1) (2006) 93–98.

DOI: 10.1016/j.physe.2005.10.001

[13] V. Singh, P. K. Sharma, P. Chauhan, Synthesis of CdS nanoparticles with enhanced optical properties, Materials Characterization 62 (1) (2011) 43–52.

[14] S. Q. Sun, T. Li, Synthesis and characterization of CdS nanoparticles and nanorods via solvohydrothermal route, Crystal Growth & Design 7 (11) (2007) 2367–2371.

DOI: 10.1021/cg060529t

[15] N. Bao, L. Shen, T. Takata, K. Domen, A. Gupta, K. Yanagisawa, C. A. Grimes, Facile Cdthiourea complex thermolysis synthesis of phase-controlled CdS nanocrystals for photocatalytic hydrogen production under visible light, J. Phys. Chem. C 111 (47) (2007).

DOI: 10.1021/jp076566s

[16] B. D. Cullity, S. R. Stock, Elements of X-ray diffraction, 3rd Edition, Prentice Hall, Upper Saddle River, N.J., (2001).

[17] P. Nemec, I. Nemec, P. Nahlkov, K. Knzek, P. Mal, Ammonia-free chemical bath deposition of cds films: tailoring the nanocrystal sizes, J. Cryst. Growth 240 (3-4) (2002) 484–488.

DOI: 10.1016/s0022-0248(02)00930-2

[18] A. K. Arora, M. Rajalakshmi, T. R. Ravindran, Phonon confinement in nanostructured materials, Encyclopedia of Nanoscience and Nanotechnology 8 (2004) 499–512.

[19] R. Madhusoodanan Nair, M. Abdul Khadar, S. Saravana Kumar, M. Rajalakshmi, A. K. Arora,K. G.M. Nair, Effect of N+ ion implantation on the optical properties of nanostructured CdS thin film prepared by CBD technique, Nucl. Instrum. Meth. Phys. Res. B 254 (2007).

DOI: 10.1016/j.nimb.2006.10.068

[20] W. Chen, Z. Wang, Z. Lin L. Lin, Absorption and luminescence of the surface states in ZnS nanoparticles, J. Appl. Phys. 82 (6) (1997) 3111–3115.

DOI: 10.1063/1.366152

[21] R. Banerjee, et al., Effect of the size-induced structural transformation on the band gap in CdS nanoparticles, Journal of Physics: Cond. Matter 12 (50) (2000) 10647.

[22] D.S. Chuu, C. -M. Dai, Quantum size effects in CdS thin films, Phys. Rev. B 45 (20) (1992) 11805.

DOI: 10.1103/physrevb.45.11805

[23] L. E. Brus, Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state, J. Chem. Phys. 80 (9) (1984) 4403–4409.

DOI: 10.1063/1.447218

[24] V. Noack, A. Eychmüllar, Annealing of Nanometer-Sized Zinc Oxide Particles, Chem. Mater. 14 (3) (2002) 1411–1417.

DOI: 10.1021/cm011262i

[25] S. Saravana Kumar, M. AbdulKhadar, R. MadhusoodananNair, T. R. Ravindran, K. G.M. Nair, Modification of spectroscopic properties of nanostructured CdS thinfilms by Cu+ ion implantation, Physica B 405 (12) (2010) 2715–2719.

DOI: 10.1016/j.physb.2010.03.062

[26] Y. Kanemitsu, T. Inagaki, M. Ando, K. Matsuda, T. Saiki, C. White, Photoluminescence spectrum of highly excited single CdS nanocrystals studied by a scanning near-field optical microscope, Appl. Phys. Lett. 81 (1) (2002) 141–144.

DOI: 10.1063/1.1490141

[27] A. Ishizumi, K. Matsuda, T. Saiki, C. W. White, Y. Kanemitsu, Photoluminescence properties of single Mn-doped CdS nanocrystals studied by scanning near-field optical microscopy, Appl. Phys. Lett. 87 (13) (2005) 133104–133107.

DOI: 10.1063/1.2058228

[28] W. Wang, I. Germanenko, M. S. El-Shall, Room-temperature synthesis and characterization of nanocrystalline CdS, ZnS, and CdxZn1−xS, Chem. Mater. 14 (7) (2002) 3028–3033.

DOI: 10.1021/cm020040x

[29] J. Zhang, L. Sun, C. Qian, C. Liao, C. Yan, Synthesis and optical properties of nanosized CdS prepared in a quaternary CTAB/ nhexanol/n-heptane/water reverse micelle, Chinese Science Bulletin 46 (22) (2001) 1873–1877.

DOI: 10.1007/bf02901161

[30] F. Zezza, R. Comparelli, M. Striccoli, M. L. Curri, R. Tommasi, A. Agostiano, M. Della Monica, High quality CdS nanocrystals: surface effects, Synthetic Metals 139 (3) (2003) 597–600.

DOI: 10.1016/s0379-6779(03)00320-5

[31] V. Singh, P. Chauhan, Structural and optical characterization of CdS nanoparticles prepared by chemical precipitation method, J. Phys. Chem. Solids 70 (7) (2009) 1074–1079.

DOI: 10.1016/j.jpcs.2009.05.024

[32] W. Chen, Z. Lin, Z. WANG, Y. Xu, L. Lin, Structure, fluorescence and stability of CdS nanoparticles prepared in air, J. Mater. Sci. Technol. 14 (5) (1998) 389–394.

In order to see related information, you need to Login.