Cysteine Interactions in Glutathione Mediated Assembly of Silver Nanoparticles in the Presence of Metal Ions


Article Preview

We Report Herein Results of an Investigation of the Assembly of Silver Nanoparticles Mediated by Glutathione (GSH) and Cysteine (Cys) Interaction in the Presence of Metal Ions: Ag+, Cd2+, Co2+, Cu2+, Fe3+, Hg2+, Ni2+, Pb2+, Zn2+. The Silver Nanoparticles Produce Well-Ordered Structures upon Interaction with Glutathione in Variable Acidic Ph Condition and Exhibit Pronounced Changes in their Optical Properties Arising due to Electromagnetic Interaction. The Effect of Selected Metal Ions on the Nature of Complexation as Well as the Variation in the Optical Response due to Variable Degree of Complex Formation Amongst the Particles Have Been Investigated. The Changes in Optical Properties of the Silver Nanoparticles Have Been Accounted for the Complex Formation among the Aggsh, Cys and Metal Ions. The Complexes Have Been Characterized by UV-Vis Spectroscopy, FTIR, and AFM Studies. It Has Been Observed that the New Absorption Peaks Appear and Intensifies Depending on the Cys and Metal Ion Interaction. The Aggsh Nanoparticles Provided a Simple and Rapid Strategy to Detect Cys with the Aid of Metal Ions in Aqueous Solution. Different Metal Ions Give Different UV-Vis Spectra Profile and Show Different Sensitivity. This New Material Allows a Quantitative Assay of Cys down to the Concentration of 1× 10−5 M in Co2+ Ion Complexation. The Mechanism by which Metal Ions Can Bind with both the GSH Modified Ag Nanoparticles and Cys Molecule through Cooperative Metal–ligand Interactions Is Discussed.



Journal of Nano Research (Volumes 18-19)






C. S. Keskin et al., "Cysteine Interactions in Glutathione Mediated Assembly of Silver Nanoparticles in the Presence of Metal Ions", Journal of Nano Research, Vols. 18-19, pp. 63-76, 2012

Online since:

July 2012




[1] O. Yamauchi, A. Odani, M. Takani, Metal–amino acid chemistry. Weak interactions and related functions of side chain groups. J. Chem. Soc. Dalton Trans. 18 (2002) 3411–3421.

DOI: 10.1039/b202385g

[2] J.M. White, R.A. Manning, N.C. Li, Metal interaction with sulfur-containing amino acids. II. Nickel and Copper(II) complexes. J. Am. Chem. Soc. 78 (1956) 367-2370.

DOI: 10.1021/ja01592a006

[3] O. Yamauchi, Amino acid- and protein-metal chemistry as an approach to biological functions. Pure & Appl. Chern. 67 (1995) 297-304.

[4] V.N. Bowman, A.L. Heaton, P.B. Armentrout, Metal cation dependence of interactions with amino acids: bond energies of Rb+ to Gly, Ser, Thr, and Pro. J. Phys. Chem. B 114 (2010) 4107–4114.

DOI: 10.1021/jp101264m

[5] N.M. Giles, A.B. Watts, G.I. Giles, F.H. Fry, J.A. Littlechild, C. Jacob, Metal and redox modulation of cysteine protein function. Chem. Biol. 10 (2003) 677–693.

DOI: 10.1016/s1074-5521(03)00174-1

[6] M. Widersten, E. Holmstriim, B. Mannervik, Cysteine residues are not essential for the catalytic activity of human class Mu glutathione transferase M1a-1a. FEBS 293 (1991) 156-159.

DOI: 10.1016/0014-5793(91)81175-8

[7] L.E.S. Netto, M.A. Oliveira, G. Monteiro, A.P.D. Demasi, J.R.R. Cussiol, K.F. Discola, M. Demasi, G.M. Silva, S.V. Alves, V.G. Faria, B.B. Horta, Reactive cysteine in proteins: Protein folding, antioxidant defense, redox signaling and more. Comp. Biochem. Phys. C 146 (2007).

DOI: 10.1016/j.cbpc.2006.07.014

[8] S. J Opella, T. M DeSilva, G. Veglia, Structural biology of metal-binding sequences, Bioionorg. Chem. 6 (2002) 217–223.

[9] M. Santhiago, P.R. Lima, W.J.R. Santos, L.T. Kubota, An amperometric sensor for l-cysteine based on nanostructured platform modified with 5, 5'-dithiobis-2-nitrobenzoic acid (DTNB). Sensor. Actuator. B 146 (2010) 213–220.

DOI: 10.1016/j.snb.2010.02.051

[10] M. Santhiago, I.C. Vieira, L-Cysteine determination in pharmaceutical formulations using a biosensor based on laccase from Aspergillus oryza., Sensor. Actuator. B 128 (2007) 279–285.

DOI: 10.1016/j.snb.2007.06.012

[11] G. Chwatko, E. Bald, Determination of cysteine in human plasma by high-performance liquid chromatography and ultraviolet detection after pre-column derivatization with 2-chloro-1-methylpyridinium iodide. Talanta 52 (2000) 509–515.

DOI: 10.1016/s0039-9140(00)00394-5

[12] P. Sevcikova, Z. Glatz, Specific determination of cysteine in human urine by capillary micellar electrokinetic chromatography. J. Sep. Sci. 26 (2003) 734–738.

DOI: 10.1002/jssc.200301372

[13] N. Teshima, T. Nobuta, T. Sakai, Simultaneous flow injection determination of ascorbic acid and cysteine using double flow cell. Anal. Chim. Acta 438 (2001) 21–29.

DOI: 10.1016/s0003-2670(00)01366-0

[14] A. Küster, I. Tea, S. Sweeten, J. Rozé, R.J. Robins, D. Darmaun, Simultaneous determination of glutathione and cysteine concentrations and 2H enrichments in microvolumes of neonatal blood using gas chromatography – mass spectrometry. Anal Bioanal. Chem. 390 (2008).

DOI: 10.1007/s00216-007-1799-5

[15] F.G. Bainica, J.C. Moreira, A.G. Fogg, Application of catalytic stripping voltammetry for the determination of organic sulfur compounds at a hanging mercury drop electrode: behaviour of cysteine, cystine and N-Acetylcysteine in the presence of nickel ion. Analyst 119 (1994).

DOI: 10.1039/an9941900309

[16] A. Andersson, L. Brattstrom, A. Isaksson, B. Israelsson, B. Hultberg, Determination of homocysteine in plasma by ion-exchange chromatography. Scand. J. Clin. Lab. Invest. 49 (1989) 445-449.

DOI: 10.3109/00365518909089120

[17] R. Volf, T.V. Shishkanova, V. Kral, Novel potantiometric sensor for determination of cysteine based on substituted poly(diphenylporphyrins and metalloporphyrins). J. Incl. Phenom. Macro. 35 (1999) 111-122.

[18] S.S.M. Hassan, A.F. El-Baz, H.S.M. Abd-Rabboh, A novel potentiometric biosensor for selective l-cysteine determination using l-cysteine-desulfhydrase producing Trichosporon jirovecii yeast cells coupled with sulfide electrode. Anal. Chim. Acta 602 (2007).

DOI: 10.1016/j.aca.2007.09.007

[19] H. Li, J. Xu, H. Yan, Ratiometric fluorescent determination of cysteine based on organic nanoparticles of naphthalene–thiourea–thiadiazole-linked molecule. Sensor Actuator B-Chem 139 (2009) 483–487.

DOI: 10.1016/j.snb.2009.03.028

[20] Z.P. Li, X.R. Duan, C.H. Liu, B.A. Du, Selective determination of cysteine by resonance light scattering technique based on self-assembly of gold nanoparticles. Anal. Biochem. 351 (2006) 18–25.

DOI: 10.1016/j.ab.2006.01.038

[21] L. Shang, J. Yin, J. Li, L. Jin, S. Dong, Gold nanoparticle-based near-infrared fluorescent detection of biological thiols in human plasma. Biosens. Bioelectron. 25 (2009) 269–274.

DOI: 10.1016/j.bios.2009.06.021

[22] P. K. Sudeep, S.T.S. Joseph, K.G. Thomas, Selective detection of cysteine and glutathione using gold nanorods. J. Am. Chem. Soc. 127 (2005) 6516-6517.

[23] X. Wei, L. Qi, J. Tan, R. Liu, F. Wang, Colorimetric sensor for determination of cysteine by carboxymethyl cellulose-functionalized gold nanoparticles, Anal. Chim. Acta 671 (2010) 80–84.

DOI: 10.1016/j.aca.2010.05.006

[24] K. Yamashita, M. Noguchi, A. Mizukoshi, Y. Yanagisawa, Acetaldehyde removal from indoor air through chemical absorption using L-Cysteine. Int. J. Environ. Res. Public Health 7 (2010) 3489-3498.

DOI: 10.3390/ijerph7093489

[25] J. Shao, Y. Yang, C. Shi, Preparation and adsorption properties for öetal ions of chitin modified by L-Cysteine. J. Appl. Polym. Sci. 88 (2003) 2575–2579.

DOI: 10.1002/app.12098

[26] P. Sarkar, S. Banerjee, D. Bhattacharyay, A.P.F. Turner, Electrochemical sensing systems for arsenate estimation by oxidation of L-cysteine. Ecotox. Environ. Safe 73 (2010) 1495–1501.

DOI: 10.1016/j.ecoenv.2010.07.004

[27] D.L. Anderson, Use of L-cysteine for minimization of inorganic Hg loss during thermal neutron irradiation. J. Radioanal Nucl. Chem. 282 (2009) 11–14.

DOI: 10.1007/s10967-009-0160-1

[28] H. Lang, Z. Yu, G. ZhiRui, G. Ning, Facile synthesis of gold nanoribbons by L-cysteine at room temperature. Chinese Sci. Bull. 54 (2009) 1626-1629.

DOI: 10.1007/s11434-009-0163-x

[29] P.K. Jain, I.H. El-Sayed, M.A. El-Sayed, Au nanoparticles target cancer. Nanotoday 2 (2007) 18-29.

DOI: 10.1016/s1748-0132(07)70016-6

[30] J.S. Kim, E. Kuk, K.N. Yu, J. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y.K. Park, Y.H. Park, C.Y. Hwang, Y.K. Kim, Y.S. Lee, D.H. Jeong, M.H. Cho, Antimicrobial effects of silver nanoparticles. Nanomed-Nanotechnol. 3 (2007) 95– 101.

DOI: 10.1016/j.nano.2014.04.007

[31] A.M. Chockalingam, H.K.R.R. Babu, R. Chittor, J.P. Tiwari, Gum arabic modified Fe3O4 nanoparticles cross linked with collagen for isolation of bacteria. J. Nanobiotechnology 8 (2010) 1-9.

DOI: 10.1186/1477-3155-8-30

[32] D.J. Bharali, I. Klejbor, E.K. Stachowiak, P. Dutta, I. Roy, N. Kaur, E.J. Bergey, P.N. Prasad, M.K. Stachowiak, Organically modified silica nanoparticles: A nonviral vector for in vivo gene delivery and expression in the brain, PNAS 102 (2005).

DOI: 10.1073/pnas.0504926102

[33] Y. Zhang, K. Zhang, H. Ma, Electrochemical DNA biosensors based on gold nanoparticles /cysteamine/ poly(glutamic acid) modified electrode. Am. J. Biomed. Sci. 1 (2009) 115-125.

DOI: 10.5099/aj090200115

[34] A.M. Koch, F. Reynolds, P. Merkle, R. Weisleder, L. Josephson, Transport of surface-modified nanoparticles through cell monolayers. ChemBioChem 6 (2005) 337-345.

DOI: 10.1002/cbic.200400174

[35] Y. Kim, R.C. Johnson, J.T. Hupp, Gold nanoparticle-based sensing of spectroscopically silent, heavy metal ions. Nano Lett. 1 (2001) 165-167.

DOI: 10.1021/nl0100116

[36] C.C. Wang, M.O. Luconi, A.N. Masi, L.P. Fernández, Derivatized silver nanoparticles as sensor for ultra-trace nitrate determination based on light scattering phenomenon. Talanta 77 (2009) 1238–1243.

DOI: 10.1016/j.talanta.2008.08.035

[37] G.I. Romanovskaya, A.Y. Olenin, S.Y. Vasileva, Y.A. Krutyakov, Chemically modified silver nanoparticles as a new sorbent for preconcentration of polycyclic aromatic hydrocarbons from aqueous solutions. Chemistry 422 (2008) 236–239.

DOI: 10.1134/s0012500808090097

[38] B. Pan, F. Gao, H. Gu, Dendrimer modified magnetite nanoparticles for protein immobilization. J. Colloid Interf. Sci. 284 (2005)1–6.

[39] H. Pan, X. Tao, C. Mao, J.J. Zhu, F. Liang, Aminopolycarboxyl-modified Ag2S nanoparticles: Synthesis, characterization and resonance light scattering sensing for bovine serum albumin. Talanta 71 (2007) 276–281.

DOI: 10.1016/j.talanta.2006.03.057

[40] A. Zhu, L. Yuan, W. Jin, S. Dai, Q. Wang, , Z. Xue, A. Qin, Polysaccharide surface modified Fe3O4 nanoparticles for camptothecin loading and release. Acta Biomater. 5 (2009) 1489–1498.

DOI: 10.1016/j.actbio.2008.10.022

[41] W. Chen, X. Tu, X. Guo, Fluorescent gold nanoparticles-based fluorescence sensor for Cu2+ ions. Chem. Commun. 13 (2009) 1736–1738.

DOI: 10.1039/b820145e

[42] R.P. Brinas, M. Hu, L. Qian, E.S. Lymar, J.F. Hainfeld, Gold nanoparticle size controlled by polymeric Au(I) thiolate precursor size, J. Am. Chem. Soc. 130 (2008) 975-982.

DOI: 10.1021/ja076333e

[43] T. Li, H.G. Park, H.S. Lee, S.H. Choi, Circular dichroism study of chiral biomolecules conjugated with silver nanoparticles. Nanotechnology 15 (2004) 660–663.

DOI: 10.1088/0957-4484/15/10/026

[44] M.C. Brelle, J.Z. Zhang, L. Nguyen, R.K. Mehra, Synthesis and ultrafast study of cysteine- and glutathione-capped Ag2S semiconductor colloidal nanoparticles. J. Phys. Chem. A 103 (1999) 10194-10201.

DOI: 10.1021/jp991999j

[45] C. Jiang, S. Xu, D. Yang, F. Zhang, W. Wang, Synthesis of glutathione-capped CdS quantum dots and preliminary studies on protein detection and cell fluorescence image. Luminescence 22 (2007) 430–437.

DOI: 10.1002/bio.981

[46] L. Zhang, C. Xu, B. Li, Simple and sensitive detection method for chromium (VI) in water using glutathione—capped CdTe quantum dots as fluorescent probes. Microchim. Acta 166 (2009) 61–68.

DOI: 10.1007/s00604-009-0164-0

[47] N.J. M. Sanghamitra, S. Mazumdar, Effect of polar solvents on the optical properties of water-dispersible thiol-capped cobalt nanoparticles. Langmuir 24 (2008) 3439-3445.

DOI: 10.1021/la702876h

[48] G. Multhoff, T. Meier, C. Botzler, M. Wiesnet, A. Allenbacher, W. Wilmanns, R.D. Issels, Differential effects of ifosfamide on the capacity of cytotoxic T lymphocytes and natural killer cells to lyse their target cells correlate with intracellular glutatione leves. Blood 85 (1995).

DOI: 10.1007/bf02572051

[49] M. Bieri, T. Bürgi, L-Glutathione chemisorption on gold and acid/base induced structural changes: A PM-IRRAS and time-resolved in situ ATR-IR spectroscopic study. Langmuir 21 (2005) 1354-1363.

DOI: 10.1021/la047735s

[50] I.S. Lim, D. Mott,W. Ip, P.N. Njoki, Y. Pan, S. Zhou, C.J. Zhong, Interparticle interactions in glutathione mediated assembly of gold nanoparticles. Langmuir 24 (2008) 8857-8863.

DOI: 10.1021/la800970p

[51] H. Li, Y. Bian, Selective colorimetric sensing of histidine in aqueous solutions using cysteine modified silver nanoparticles in the presence of Hg2+. Nanotechnology 20 (2009) 1-6.

DOI: 10.1088/0957-4484/20/14/145502

[52] H. Li, Z. Cui, C. Han, Glutathione-stabilized silver nanoparticles as colorimetric sensor for Ni2+ ion. Sensor. Actuat. B-Chem. 143 (2009) 87–92.

DOI: 10.1016/j.snb.2009.09.013

[53] J. Silver, M.Y. Hamed, I.E.G. Morrison, Studies of the reactions of ferric iron with glutathione and some related thiols. Part V. Solid complexes containing FeII and glutathione or FeIII with oxidized glutathione. Inorg. Chim. Acta 107 (1985).

DOI: 10.1016/s0020-1693(00)80699-4

[54] S. Basu, S.K. S. Ghosh, S. Kundu, S. Panigrahi, S. Praharaj, S. Pande, T.P. Jana, Biomolecule induced nanoparticle aggregation: Effect of particle size on interparticle coupling. J. Colloid Interf. Sci. 313 (2007) 724–734.

DOI: 10.1016/j.jcis.2007.04.069

[55] H. Shindo, T.L. Brown, Infrared spectra complexes of -cysteine and related compounds with zinc(II), cadmium(II), mercury(II), and lead(II). J. Am. Chem. Soc. 87 (1965) 1904-(1909).

DOI: 10.1021/ja01087a013

[56] I. Petean, G.H. Tomoaia, O. Horovitz, A. Mocanu, M. Tomoaia-Cotisel, Cysteine mediated, assembly of gold nanoparticles. J. Optoelectron. Adv. M. 10 (2008) 2289-2292.

[57] S.H. Choi, S.H. Lee, Y.M. Hwang, K.P. Lee, H.D. Kang,: Interaction between the surface of the silver nanoparticles prepared by g-irradiation and organic molecules containing thiol group. Radiat. Phy. Chem. 67 (2003)517–521.

DOI: 10.1016/s0969-806x(03)00097-5

In order to see related information, you need to Login.