Pulmonary Toxicity of Well-Dispersed Single-Wall Carbon Nanotubes Following Intratracheal Instillation

Abstract:

Article Preview

Single-Wall Carbon Nanotubes (SWCNTs) Were Well-Dispersed Using Ultrasonication to Conduct an Intratracheal Instillation Study. The Geometric Mean Diameter and Length of the SWCNT in Distilled Water Including 0.1 % Triton X-100 Was 44 Nm and 0.69 μm, Respectively. Rats Intratracheally Received 0.2 Mg or 0.4 Mg of SWCNT, and a Control Group Received Intratracheal Instillation of Distilled Water Containing 0.1 % Triton X-100 . The Rats Were then Sacrificed at 3 Days, 1 Week, 1 Month, 3 Months and 6 Months after Instillation. Bronchoalveolar Lavage Fluid (BALF) and Pathological Features Revealed that the Dose of SWCNT Induced Persistent Neutrophil Infiltration in Rat Lungs. In the Cytokine-Induced Neutrophil Chemoattractants (CINCs) Family, the Concentrations of CINC-1 and CINC-2 in the BALF Increased Persistently in the SWCNT-Exposed Groups. the Concentration of HO-1 in the BALF Was Also up-Regulated Persistently in the Exposed Groups. These Data Suggested that Well-Dispersed SWCNT Had an Inflammatory Potential in the Present Study.

Info:

Periodical:

Journal of Nano Research (Volumes 18-19)

Pages:

9-25

DOI:

10.4028/www.scientific.net/JNanoR.18-19.9

Citation:

Y. Morimoto et al., "Pulmonary Toxicity of Well-Dispersed Single-Wall Carbon Nanotubes Following Intratracheal Instillation", Journal of Nano Research, Vols. 18-19, pp. 9-25, 2012

Online since:

July 2012

Export:

Price:

$35.00

[1] J.W. Card, D.C. Zeldin, J.C. Bonner, E.R. Nestmann, Pulmonary applications and toxicity of engineered nanoparticles. Am. J. Physiol. Lung Cell Mol. Physiol. 295 (2008) L400-411.

DOI: 10.1152/ajplung.00041.2008

[2] C.W. Lam, J.T. James, R. McCluskey, R.L. Hunter, Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 77 (2004) 126-134.

DOI: 10.1093/toxsci/kfg243

[3] A.A. Shvedova, E.R. Kisin, R. Mercer, A.R. Murray, V.J. Johnson, A.I. Potapovich, Y.Y. Tyurina, O. Gorelik, S. Arepalli, D. Schwegler-Berry, A.F. Hubbs, J. Antonini, D.E. Evans, B.K. Ku, D. Ramsey, A. Maynard, V.E. Kagan, V. Castronova, P. Baron, Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am. J. Physiol. Lung Cell Mol. Physiol. 289 (2005).

DOI: 10.1152/ajplung.00084.2005

[4] D.B. Warheit, B.R. Laurence, K.L. Reed, D.H. Roach, G.A. Reynolds, T.R. Webb, Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol. Sci. 77 (2004) 117-125.

DOI: 10.1093/toxsci/kfg228

[5] Y. Morimoto, M. Hirohashi, N. Kobayashi, A. Ogami, M. Horie, T. Oyabu, T. Myojo, M. Hashiba, Y. Mizuguti, T. Kambara, B.W. Lee, E. Kuroda, M. Shimada, W.N. Wang, K. Mizuno, K. Yamamoto, K. Fujita, J. Nakanishi, I. Tanaka, Pulmonary toxicity of well-dispersed single-wall carbon nanotubes after inhalation. Nanotoxicology in press (DOI: 10. 3109/17435390. 2011. 594912. ).

DOI: 10.3109/17435390.2011.620719

[6] L. Wang, V. Castranova, A. Mishra, B. Chen, R.R. Mercer, D. Schwegler-Berry, Y. Rojanasakul, Dispersion of single-walled carbon nanotubes by a natural lung surfactant for pulmonary in vitro and in vivo studies. Part. Fibre Toxicol. 7 (2010) 31.

DOI: 10.1186/1743-8977-7-31

[7] S. Liu, L. Wei, L. Hao, N. Fang, M.W. Chang, R. Xu, Y. Yang, Y. Chen, Sharper and Faster Nano Darts, Kill More Bacteria. A study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 3 (2009).

DOI: 10.1021/nn901252r

[8] W.G. Kreyling, M. Semmler-Behnke, J. Seitz, W. Scymczak, A. Wenk, P. Mayer, S. Takenaka, G. Oberdorster, Size dependence of the translocation of inhaled iridium and carbon nanoparticles aggregates from the lung of rats to the blood and secondary target organs. Inhal. Toxicol. 21 (2009).

DOI: 10.1080/08958370902942517

[9] Y. Morimoto, N. Kobayashi, N. Shinohara, T. Myojo, I. Tanaka, J. Nakanishi, Hazard assessments of manufactured nanomaterials. J. Occup. Health 52 (2010) 325-334.

DOI: 10.1539/joh.r10003

[10] D.J. Mann, W.L. Hase, Direct dynamics simulations of the oxidation of a single wall carbon nanotube. Phys. Chem. Chem. Phys. 2001, 3 (2001) 4376-4383.

DOI: 10.1039/b103762p

[11] L. Vaisman, H.D. Wagner, G. Marom, The role of surfactants in dispersion of carbon nanotubes. Adv. Colloid Interface Sci. 128-130 (2006) 37-46.

DOI: 10.1016/j.cis.2006.11.007

[12] A. Jung, R. Graupner, L. Ley, A. Hirsch, Quantitative determination of oxidative defects on single walled carbon nanotubes. Physica Status Solidi B243 (2006) 3217-3220.

DOI: 10.1002/pssb.200669128

[13] X. Wang, T. Xia, S.A. Ntim, Z. Ji, S. George, H. Meng, H. Zhang, V. Castranova, S. Mitra, A.E. Nel, Quantitative techniques for assessing and controlling the dispersion and biological effects of multiwalled carbon nanotubes in mammalian tissue culture cells. ACS Nano 4 (2010).

DOI: 10.1021/nn102112b

[14] S. Kang, M.S. Mauter, M. Elimelech M, Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environ. Sci. Technol. 42 (2008) 7528-7534.

DOI: 10.1021/es8010173

[15] T. Coccini, E. Roda, D.A. Sarigiannis, P. Mustarelli, E. Quartarone, A. Profumo, L. Manzo, Effects of water-soluble functionalized multi-walled carbon nanotubes examined by different cytotoxicity methods in human astrocyte D384 and lung A549 cells. Toxicology 269 (2010).

DOI: 10.1016/j.tox.2010.01.005

[16] P.J. Borm, K. Driscoll, Particles, inflammation and respiratory tract carcinogenesis. Toxicol. Lett. 88 (1996) 109-113.

[17] E. Shacter, S.A. Weitzman, Chronic inflammation and cancer. 2002, 16 (2002) 217-232.

[18] A. Ogami, Y. Morimoto, T. Myojo, T. Oyabu, M. Murakami, K. Nishi, C. Kadoya, I. Tanaka, Histopathological changes in rat lung following intratracheal instillation of silicon carbide whiskers and potassium octatitanate whiskers. Inhal. Toxicol. 19 (2007).

DOI: 10.1080/08958370701399869

[19] Y. Morimoto, A. Ogami, M. Todoroki, M. Yamamoto, M. Murakami, M. Hirohashi, T. Oyabu, T. Myojo, K. Nishi, C. Kadoya, S. Yamasaki, H. Nagatomo, I. Tanaka, K. Fujita, S. Endoh, K. Uchida, K. Yamamoto, N. Kobayashi, J. Nakanishi, Expression of inflammation-related cytokines following intratracheal instillation of nickel oxide nanoparticles. Nanotoxicology 4 (2010).

DOI: 10.3109/17435390903518479

[20] K. Nishi, Y. Morimoto, A. Ogami, M. Murakami, T. Myojo, T. Oyabu, C. Kadoya, M. Yamamoto, M. Todoroki, M. Hirohashi, S. Yamasaki, K. Fujita, S. Endo, K. Uchida, K. Yamamoto, J. Nakanishi, I. Tanaka, Expression of cytokine-induced neutrophil chemoattractant in rat lungs by intratracheal instillation of nickel oxide nanoparticles. Inhal. Toxicol. 21 (2009).

DOI: 10.1080/08958370802716722

[21] R.R. Mercer, J. Scabilloni, L. Wang, E. Kisin, A.R. Murray, D. Schwegler-Berry, A.A. Shvedova, V. Castranova, Alteration of deposition pattern and pulmonary response as a result of improved dispersion of aspirated single walled carbon nanotubes in a mouse model. Am. J. Physiol. Lung Cell Mol. Physiol. 294 (2008).

DOI: 10.1152/ajplung.00186.2007

[22] A.A. Shvedova, E. Kisin, A.R. Murray, V.J. Johnson, O. Gorelik, S. Arepalli, A.F. Hubbs, R.R. Mercer, P. Keohavong, N. Sussman, J. Jin, J. Yin, S. Stone, B.T. Chen, G. Deye, A. Maynard, V. Castranova, P.A. Baron, Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. Am. J. Physiol. Lung Cell Mol. Physiol. 295 (2008).

DOI: 10.1152/ajplung.90287.2008

[23] N. Kobayashi, M. Naya, K. Mizuno, K. Yamamoto, M. Ema, J. Nakanishi, Pulmonary and systemic response of highly pure and well-dispersed single-wall carbon nanotubes after single intratracheal instillation in rats. Inhal. Toxicol. in press. (DOI: 10. 3109/08958378. 2011. 614968).

DOI: 10.3109/08958378.2011.614968

[24] Y. Morimoto, M. Hirohashi, A. Ogami, T. Oyabu, T. Myojo, M. Hashiba, Y. Mizuguchi, T. Kambara, B.W. Lee, E. Kuroda, I. Tanaka, Pulmonary toxicity following an intratracheal instillation of nickel oxide nanoparticle agglomerates. J. Occup. Health 53 (2011).

DOI: 10.1539/joh.11-0034-br

[25] Y. Morimoto, M. Hirohashi, A. Ogami, T. Oyabu, T. Myojo, M. Todoroki, M. Yamamoto, M. Hashiba, Y. Mizuguchi, B.W. Lee, E. Kuroda, M. Shimada, W.N. Wang, K. Yamamoto, K. Fujita, S. Endoh, K. Uchida, N. Kobayashi, K. Mizuno, M. Inada, H. Tao, T. Nakazato, J. Nakanishi, I. Tanaka, Pulmonary toxicity of well-dispersed multiwall carbon nanotubes following inhalation and intratracheal instillation. Nanotoxicology in press. (DOI: 10. 3109/17435390. 2011. 594912).

DOI: 10.3109/17435390.2011.594912

[26] Y. Morimoto, M. Hirohashi, A. Ogami, T. Oyabu, T. Myojo, K. Nishi, C. Kadoya, M. Todoroki, M. Yamamoto, M. Murakami, M. Shimada, W.N. Wang, K. Yamamoto, K. Fujita, S. Endoh, K. Uchida, N. Shinohara, J. Nakanishi, I. Tanaka, Inflammogenic effect of well-characterized fullerenes in inhalation and intratracheal instillation studies. Part. Fibre. Toxicol. 7 (2010).

DOI: 10.1186/1743-8977-7-4

[27] C.C. Chou, H.Y. Hsiao, Q.S. Hong, C.H. Chen, H.W. Peng, P.C. Yang, Single-walled carbon nanotubes can induce pulmonary injury in mouse model. Nano lett. 8 (2008) 438-445.

DOI: 10.1021/nl0723634

[28] H. Nagatomo, Y. Morimoto, T. Oyabu, M. Hirohashi, A. Ogami, H. Yamato, K. Kuroda, T. Higashi, I. Tanaka. Expression of heme oxygenase-1 in the lungs of rats exposed to crocidolite asbestos. Inhal. Toxicol. 17 (2005) 293-296.

DOI: 10.1080/08958370590922580

[29] H. Nagatomo, Y. Morimoto, A. Ogami, M. Hirohashi, T. Oyabu, K. Kuroda, T. Higashi, I. Tanaka. Change of heme oxygenase-1 expression in lung injury induced by chrysotile asbestos in vivo and in vitro. Inhal. Toxicol. 19 (2007) 317-323.

DOI: 10.1080/08958370601144167

[30] H. Nagatomo, Y. Morimoto, T. Oyabu, M. Hirohashi, A. Ogami, H. Yamato, K. Kuroda, T. Higashi, I. Tanaka. Expression of heme oxygenase-1 in the lungs of rats exposed to crystalline silica. J. Occup. Health. 48 (2006) 124-128.

DOI: 10.1539/joh.48.124

[31] L. Risom, M. Dybdahl, J. Bornholdt, U. Vogel, H. Wallin, P. Møller, S. Loft. Oxidative DNA damage and defence gene expression in the mouse lung after short-term exposure to diesel exhaust particles by inhalation. Carcinogenesis. 24 (2003).

DOI: 10.1093/carcin/bgg144

[32] A.A. Shvedova, E.R. Kisin, A.R. Murray, O. Gorelik, S. Arepalli, V. Castranova, S.H. Young, F. Gao, YY. Tyurina, T.D. Oury, V.E. Kaagan. Vitamin E deficiency enhances pulmonary inflammatory response and oxidative stress induced by single-walled carbon nanotubes in C57BL/6 mice. Toxicol. Appl. Pharmacol. 221 (2007).

DOI: 10.1016/j.taap.2007.03.018

[33] A.A. Shvedova, E.R. Kisin, A.R. Murray, C. Kommineni, V. Castranova, B. Fadeel, V.E. Kagan. Increased accumulation of neutrophils and decreased fibrosis in the lung of NADPH oxidase-deficient C57BL/6 mice exposed to carbon nanotubes. Toxicol Appl Pharmacol. 231 (2008).

DOI: 10.1016/j.taap.2008.04.018

[34] C.W. Lam, J.T. James, R. McCluskey, S. Arepalli, R.L. Hunter. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol. 36 (2006) 189-217.

DOI: 10.1080/10408440600570233

[35] A.D. Maynard, P.A. Baron, M. Foley, A.A. Shvedova, E.R. Kisin, V. Castranova. Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J. Toxicol. Environ. Health. A 67 (2004).

DOI: 10.1080/15287390490253688

In order to see related information, you need to Login.