Biogenic Silver Nanoparticles and its Antifungal Activity as a New Topical Transungual Drug


Article Preview

Silver nanoparticles production was monitored by UVVis and TEM micrograph and they were obtained as spherical and homogenous nanoparticles with a size of ~100 nm by photon correlation spectroscopy (PCS). Silver nanoparticles, in an IC80 range of 1-2 μg/mL, showed significant antifungal activity against T. rubrum. Cytotoxicity through hemolytic activity against erythrocytes and the viability of V79 fibroblast or HL60 cells showed less toxicity than amphotericin B. The disk diffusion test showed that the silver nanoparticles exerted a similar inhibition zone that amphotericin B by a synergistic effect when added at the same time against T. rubrum culture.








P. D. Marcato et al., "Biogenic Silver Nanoparticles and its Antifungal Activity as a New Topical Transungual Drug", Journal of Nano Research, Vol. 20, pp. 99-107, 2012

Online since:

December 2012




[1] Anazetti MC, Melo PS, Durán N, Haun M. Comparative cytotoxicity of dimethylamide-crotonin in the promyelocytic leukemia cell line (HL60) and human peripheral blood mononuclear cells, Toxicology 2003; 188: 261-274.

DOI: 10.1016/s0300-483x(03)00089-1

[2] Buzea C, Blandino IIP, Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007; 2: MR17 - MR172.

DOI: 10.1116/1.2815690

[3] Costa TR, Costa MR, da Silva MV, Rodrigues AB, Fernandes OFL, Soares AJ, Silva MRR. Etiology and epidemiology in dermatophytosis in Goiânia, State of Goiás, Brazil. Rev Soc Brasil Med Trop 1999; 32: 367-371.

DOI: 10.1590/s0037-86821999000400006

[4] Crissey JT. Common Dermatophyte Infections. A simple diagnostic test and current management, Postgraduate Medicine 1998; Fev: 191-192, 197-198, 200, 205.

DOI: 10.3810/pgm.1998.02.359

[5] Dorjnamjin D, Ariunaa M, Shim YK. Synthesis of silver nanoparticles using hydroxyl functionalized ionic liquids and their antimicrobial activity, Int J Mol Sci 2008; 9: 807-820.

DOI: 10.3390/ijms9050807

[6] Durán, N, Makita Y, Innocentini LH. Peroxidase activity in human red cell: A biological model for excited state molecules generation, Biochem Biophys Res Commun 1979; 88: 642-648.

DOI: 10.1016/0006-291x(79)92096-5

[7] Durán N, Marcato PD, De Souza, GIH, Alves OL, Esposito E. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment, J Biomed Nanotechnol 2007; 3: 203–208.

DOI: 10.1166/jbn.2007.022

[8] Durán N, Marcato PD, Alves OL, De Souza GIH, Esposito E. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains, J Nanobiotechnol 2005; 3: 8.

[9] Durán N, Marcato PD, Alves OL, Da Silva JPS, De Souza GIH, Rodrigues FA, Esposito E. Ecosystem protection by effluent bioremediation: silver nanoparticles impregnation in a textil fabrics process, J Nanoparticles Res 2010; 12: 285-292.

DOI: 10.1007/s11051-009-9606-1

[10] Durán N, Marcato PD, De Conti R, Alves OL, Costa FTM, Brocchi M. Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action, J Braz Chem Soc 2010; 21: 949-959.

DOI: 10.1590/s0103-50532010000600002

[11] Elkeeb R, AliKhan A., Elkeeb L., Hui X., Maibach HI. Transungual drug delivery: Current status, Intern J Pharm 2010; 384: 1-8.

DOI: 10.1016/j.ijpharm.2009.10.002

[12] Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharroman C, Moya JS. The antibacterial and antifungal activity of a soda-lime glass containing silver nanoparticles, Nanotechnology 2009; doi: 10. 1088/0957-4484/20/8/085103.

DOI: 10.1088/0957-4484/20/8/085103

[13] Falkiewicz-Dulik M, Macura AB. Nanosilver as substance biostabilising footwear materials in the foot mycosis prophylaxis, Mikol. Lekarska 2008; 15: 145-150.

[14] Fisher PB, Goldstein NL, Bonner DP, Mechlinski W, Bryson V, Schaffer CP. Toxicity of anphotericin B and its methyl ester toward normal and tumor cell lines, Cancer Res 1975; 35: 1996-(1999).

[15] Gajbhiye MB, Kesharwani JG, Ingle AP, Gade AK, Rai MK. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole, Nanomedicine: NBM 2009; Nanomedicine: NBM 2009; 5: 382-386.

DOI: 10.1016/j.nano.2009.06.005

[16] Gade A, Ingle A, Whiteley C, Rai M. Mycogenic metal nanoparticles: progress and applications, Biotechnol Lett 2010; DOI 10. 1007/s10529-009-0197-9.

DOI: 10.1007/s10529-009-0197-9

[17] Gade A, Bonde P, Ingle A, Marcato PD, Durán N, Rai M. Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biob Mater Bioener 2008; 2: 1–5.

[18] Gimenez IF, Anazetti MC, Melo PS, Haun M, De Azevedo MMM, Durán N, Alves OL. Cytotoxicity on V79 and HL60 cell lines by thiolated-beta-cyclodextrin-Au/violacein nanoparticles, J Biomed Nanotechnol 2005; 1, 352-358.

DOI: 10.1166/jbn.2005.041

[19] Goffeau A. Drug resistance: the fight against fungi, Nature 2008; 452: 541–542.

DOI: 10.1038/452541a

[20] Hui X, Baker SJ, Wester RC, Barbadillo S, Cashmore AK, Sanders V, Hold KM, Akama T, Zhang YK, Plattner JJ, Maibach HI. In vitro penetration of a novel oxaborole antifungal (AN2690) into the human nail plate, J Pharm Sci 2007; 96: 2622-2631.

DOI: 10.1002/jps.20901

[21] Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, Paknikar KM. Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use, Mol Pharm 2009; 6: 1388-1401.

DOI: 10.1021/mp900056g

[22] Jo YK, Kim BH, Jung G. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi, Plant Dis 2009; 93: 1037-1043.

DOI: 10.1094/pdis-93-10-1037

[23] Ingle A, Gade A, Pierrat S, Sönnichsen C, Rai M. Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria, Curr Nanosci 2008; 4: 246 141-4.

DOI: 10.2174/157341308784340804

[24] Khaydarov RR, Khaydarov RA, Estrin Y, Evgrafova S, Scheper T, Endres C, Cho SY. Silver Nanoparticles: Environmental and human health impacts. In Nanopaterials: Risks and Benefits (I. Linkov and J. Steevens, Eds). NATO Science for Peace and Security Series C: Environmental Security. Springer Netherlands. 2009; 4: 287-297.

DOI: 10.1007/978-1-4020-9491-0_22

[25] Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, Lee DG. Antifungal activity and mode of action of silver nano-particles on Candida albicans, Biometals 2009; 22: 235-242.

DOI: 10.1007/s10534-008-9159-2

[26] Kim, KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG. Antifungal effect of silver nanoparticles on dermatophytes, J Microbiol Biotechnol 2008; 18: 1482-1484.

[27] Melo PS, Justo GZ, De Azevedo MBM, Durán N, Haun M. Violacein and its complexes induce apoptosis and differentiation in HL60 cells, Toxicology 2003; 186: 217-225.

DOI: 10.1016/s0300-483x(02)00751-5

[28] Melo PS, De Azevedo MMM, Frungillo L, Anazetti MC, Marcato PD, Durán N. Nanocytotoxicity: Violacein and violacein-loaded poly (D, L-lactide-co-glycolide) nanoparticles acting on human leukemic cells, J Biomed Nanotechnol 2009; 5: 192-201.

DOI: 10.1166/jbn.2009.1018

[29] Marcato D, Durán, N. New aspects of nanopharmaceutical delivery systems, J Nanosci Nanotechnol 2008; 8: 2216-2229.

[30] Mohanpuria P, Rana NK, Yadav SK. Biosynthesis of nanoparticles: technological concepts and future applications, J Nanopart Res 2008; 10: 507–517.

DOI: 10.1007/s11051-007-9275-x

[31] Oliveira DA, Pereira DG, Fernades AMAP, De Castro SL, Souza Brito ARM, De Souza AO, Durán, N. Trypanocidal activity of 2-propen-1-amine derivatives on trypomastigotes culture and in animal model, Parasitol Res 2005; 95: 161-166.

DOI: 10.1007/s00436-004-1247-9

[32] Panacek A, Kolar M, Renata Vecerova R, Prucek R, Soukupova J, Krystof V, Hamal P, Zboril R, Kvıtek L. Antifungal activity of silver nanoparticles against Candida spp, Biomaterials 2009; 30: 6333-6340.

DOI: 10.1016/j.biomaterials.2009.07.065

[33] Park HJ, Kim HJ, Kim SH, Oh SD, Choi SH. Radiolytic synthesis of hybrid silver nanoparticles and their biobehabior, Key Eng Mat Adv Biomat VII 2007: 342-343.

[34] Park Y, Lee DG, Jang S-H, Woo E-R, Jeong HG, Choi C-H. et al. A Leu-Lys-rich antimicrobial peptide: activity and mechanism, Biochim Biophys Acta 2003; 1645: 172–182.

DOI: 10.1016/s1570-9639(02)00541-1

[35] Petica A, Gavriliu S, Lungu M, Buruntea N, Panzaru C. Colloidal silver solutions with antimicrobial properties, Mat Sci Eng B 2008; 152: 22-27.

DOI: 10.1016/j.mseb.2008.06.021

[36] Rai M, Yadav P, Bridge P, Gade A (2009a) Myconanotechnology: a new and emerging science. In: Rai, Bridge (eds) Applied Mycology. CABI publication, UK, p.258–267.

DOI: 10.1079/9781845935344.0258

[37] Rai M, Yadav A, Gade A. Current trends in phytosynthesis of metal nanoparticles, Crit Rev Biotechnol 2009b; 29: 78-78.

[38] Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials, Biotechnol Adv 2009; 27: 76-83.

DOI: 10.1016/j.biotechadv.2008.09.002

[39] Rezende C, Borsari GP, da Silva ACF, Cavalcanti FR. Dermatophytosis epidemiologic study in public institution of Barretos city, São Paulo, Brazil, Rev Brasil Anal Clin (RBAC) 2008; 40: 13-16.

[40] Samberg ME, Oldenburg SJ, Monteiro-Riviere NA. Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro, Environ Health Perspect 2010; 118: 407-413.

DOI: 10.1289/ehp.0901398

[41] Saponjic Z, Ilic V, Vodnik V, Mihailovic D, Jovancic P, Nedeljkovic J, Radetic M. The antifungal activity of corona treated polyamide and polyester fabrics loaded with silver nanoparticles, Publ Astron Obs Belgrade 2008; 84: 411- 414.

DOI: 10.1007/s12221-010-0650-3

[42] Scherer WP, Scherer MD. Scanning electron microscope imaging of onychomycosis, J Amer Podiatr Med Assoc 2004; 94: 356-362.

[43] Tom CM, Kane MP. Management of toenail onychomycosis, Am J Health Syst Pharm 1999; 56: 865-871.

[44] Vaidyanathan R, Kalishwaralal K, Gopalram S, Gurunathan S. Nanosilver—The burgeoning therapeutic molecule and its green synthesis, Biotechnol Advan 2009; 27: 924-937.

DOI: 10.1016/j.biotechadv.2009.08.001

In order to see related information, you need to Login.