Age Hardening Behavior of Carbon Nanotube Reinforced Aluminum Nanocomposites


Article Preview

In the present work, age hardening behavior of CNT reinforced Al6061 and Al2124 nanocomposites, prepared by ball milling and spark plasma sintering, was investigated. The effect of CNT content, annealing time and temperature on the age hardening behavior of the nanocomposites was evaluated and compared to the monolithic alloys prepared and age hardened under the same conditions. It was found that CNTs have a negative influence on the age hardening of the alloys. The alloys displayed standard age hardening behavior i.e. a sharp increase in hardness during initial aging followed by a steady decrease in hardness. Whereas the nanocomposites did not only display initial softening during aging but also showed reduced age hardening efficiency. The hardening efficiency was found to decrease with increasing CNT content. The complicated behavior of nanocomposites was explained in terms of dislocation recovery, large thermal mismatch between matrix and CNTs and bulk microstructure of the composites.



Edited by:

Prof. Andreas Öchsner, Prof. Irina V. Belova and Prof. Graeme E. Murch




N. Saheb et al., "Age Hardening Behavior of Carbon Nanotube Reinforced Aluminum Nanocomposites", Journal of Nano Research, Vol. 21, pp. 29-35, 2013

Online since:

December 2012




[1] D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, CRC Press, (1992).

[2] J.W. Christian, The Theory of Transformations in Metals and Alloys, Pergamon, (2002).

[3] I.J. Polmear, Light Alloys, Elsevier Ltd. (2005).

[4] P.L. Ratnaparkhi and H.J. Rack, Aging effects on the fracture toughness of SiC whisker reinforced 2XXX aluminum alloys, Scripta Metall. 23 (1989) 2143-2146.

DOI: 10.1016/0036-9748(89)90247-0

[5] Y.M. Pan, M.E. Fine and H.S. Cheng, Aging effects on the wear behavior of P/M aluminum alloy SiC particle composites, Scripta Metall. Mater. 24 (1990) 1341-1345.

DOI: 10.1016/0956-716x(90)90353-i

[6] P. Appendino, C. Badini, F. Marino and A. Tomasi, 6061 Aluminum alloy-SiC particulate composite : a comparison between aging behaviour in T4 and T6 treatments, Mat. Sci. Eng. A. 135 (1991) 275-279.

DOI: 10.1016/0921-5093(91)90575-8

[7] S.M.R.M. Abarghouie and S.M.S. Reihani, Aging behavior of a 2024 Al alloy-SiCp composite, Mater. Design. 31 (2010) 2368-2374.

DOI: 10.1016/j.matdes.2009.11.063

[8] L. Salvo and M. Suery, Effect of reinforcement on age hardening of cast 6061 Al-SiC and 6061 Al-A1203 particulate composites, Mat. Sci. Eng. A. 177 (1994) 19-28.

DOI: 10.1016/0921-5093(94)90474-x

[9] L. Salvo, G.L. Esperance, M. Suery and J.G. Legoux, Interfacial reactions and age hardening in A1-Mg-Si metal matrix composites reinforced with SiC particles, Mat. Sci. Eng. A. 177 (1994) 173-183.

DOI: 10.1016/0921-5093(94)90489-8

[10] L. Salvo, M. Suery, D. Towle and C.M. Friend, Age-hardening behaviour of liquid-processed 6061 alloy reinforced with particulates and short fibres, Compos. Part A. 27 (1996) 1201-1210.

DOI: 10.1016/1359-835x(96)00081-4

[11] W.Q. Song, P. Krauklis, A.P. Mouritz and S. Bandyopadhyay, The effect of thermal ageing on the abrasive wear behaviour of age-hardening 2014 Al/SiC and 6061 Al/SiC composites, Wear. 185 (1995) 125-130.

DOI: 10.1016/0043-1648(95)06599-7

[12] B. -chul Ko and Y. -chul Yoo, The effect of aging treatment on the microstructure and mechanical properties of AA2124 hybrid composites reinforced with both SiC whiskers and SiC particles, Compos. Sci. and Technol. 59 (1999) 775-779.

DOI: 10.1016/s0266-3538(98)00118-3

[13] Z. Xue-nan, W. Gui-song, Z. Zhen-zhu and X. Bin and Geng Lin, Effect of aging treatment on mechanical properties of ( SiCw+SiCp)/2024A1 hybrid nanocomposites, T. Nonferr. Metal. Soc. 16 (2006) 387-391.

DOI: 10.1016/s1003-6326(06)60066-6

[14] Y.D. Huang, N. Hort and K.U. Kainer, Thermal behavior of short fiber reinforced AlSi12CuMgNi piston alloys, Compos. Part A. 35 (2004) 249-263.

DOI: 10.1016/j.compositesa.2003.09.027

[15] J. -P. Cottu, J. -J. Couderc, B. Viguier and L. Bernard, Influence of SiC reinforcement on precipitation and hardening of a metal matrix composite, J. Mater. Sci. 27 (1992) 3068-3074.

DOI: 10.1007/bf01154120

[16] T.S. Srivatsan and J. Mattingly, Influence of heat treatment on the tensile properties and fracture behaviour of an aluminium alloy-ceramic particle composite, J. Mater. Sci. 289 (1993) 611-620.

DOI: 10.1007/bf01151235

[17] H.J. Choi, B.H. Min, J.H. Shin and D.H. Bae, Strengthening in nanostructured 2024 aluminum alloy and its composites containing carbon nanotubes, Compos. Part A. 42 (2011) 1438-1444.

DOI: 10.1016/j.compositesa.2011.06.008

[18] N. Saheb, A. Khalil, A.S. Hakeem, N. Al-Aqeeli, T. Laoui and A.K. Qutub: Submitted to Journal of Composite Materials.

[19] A. Khalil, A.S. Hakeem and N. Saheb, Optimization of Process Parameters in Spark Plasma Sintering Al6061 and Al2124 Aluminum Alloys, Adv. Mater. Res. 328-330 (2011) 1517-1522.

DOI: 10.4028/

[20] S.C. Wang and M.J. Starink, Two types of S phase precipitates in Al-Cu-Mg alloys, Acta Mater. 55 (2007) 933-941.

DOI: 10.1016/j.actamat.2006.09.015

[21] H.J. Rack, Proc. Conf. Dispersion Strengthened Aluminum Alloys, Minerals, Metals and Materials Society, Warrendale, PA (1988) 649.

[22] H. Ribes, L. Salvo and M. Suery: Proc. Conf. 7th International Conference on Composite Materials, " China Society of Aeronautics and Astronautics, Beijing, China (1989) 705.

[23] N. Prakash, Master of Science Thesis, Department of Mechanical Engineering, Florida State University (2005).

[24] S. Mazzini and JC Caretti, Effect of deformation at elevated temperature before age-hardening on the mechanical properties of 2024 commercial aluminium alloy, Scripta Metall. Mater. 25 (1991) 1987-(1990).

DOI: 10.1016/0956-716x(91)90340-7

[25] C. Deng, D. Wang, X. Zhang and A. Li, Processing and properties of carbon nanotubes reinforced aluminum composites, Mat. Sci. Eng. A. 444 (2007) 138-145.

[26] W. Salas, N.G. Alba-Baena and L.E. Murr, Explosive Shock-Wave Consolidation of Aluminum Powder/Carbon Nanotube Aggregate Mixtures: Optical and Electron Metallography, Metall. Mater. Trans. A. 38 (2007) 2928-2935.

DOI: 10.1007/s11661-007-9336-x

[27] A. Esawi and M. Elborady, Carbon nanotube-reinforced aluminium strips, Compos. Sci. Technol. 68 (2008) 486-492.

[28] I. -Y. Kim, J. -H. Lee, G. -S. Lee, S. -H. Baik, Y. -J. Kim and Y. -Z. Lee, Friction and wear characteristics of the carbon nanotube – aluminum composites with different manufacturing conditions, Wear. 267 (2009) 593-598.

DOI: 10.1016/j.wear.2008.12.096

[29] H.J. Choi, S.M. Lee and D.H. Bae, Wear characteristic of aluminum-based composites containing multi-walled carbon nanotubes, Wear. 270 (2010) 12-18.

DOI: 10.1016/j.wear.2010.08.024

[30] A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher and S. Lanka, Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites Compos. Sci. Technol. 70 (2010) 2237-2241.

DOI: 10.1016/j.compscitech.2010.05.004

[31] J. -zhi Liao, M. -J. Tan and I. Sridhar, Spark plasma sintered multi-wall carbon nanotube reinforced aluminum matrix composites, Mater. Design. 31 (2010) S96-S100.

DOI: 10.1016/j.matdes.2009.10.022

[32] H.R. Shercliff and M.F. Ashby, A process model for age hardening of aluminium alloys—I. The model, Acta Metall. Mater. 38 (1990) 1789-1802.

DOI: 10.1016/0956-7151(90)90291-n

[33] H.R. Shercliff and M.F. Ashby, A process model for age hardening of aluminium alloys—II. Applications of the model, Acta Metall. Mater. 38 (1990) 1803-1812.

DOI: 10.1016/0956-7151(90)90292-o

Fetching data from Crossref.
This may take some time to load.