Modeling of the Plastic Deformation of Polycrystalline Materials in Micro and Nano Level Using Finite Element Method


Article Preview

Recent experiments on polycrystalline materials show that nanocrystalline materials have a strong dependency to the strain rate and grain size in contrast to the microcrystalline materials. In this study, mechanical properties of polycrystalline materials in micro and nanolevel were studied and a unified notation for them was presented. To completely understand the rate-dependent stress-strain behavior and size-dependency of polycrystalline materials, a dislocation density based model was presented that can predict the experimentally observed stress-strain relations for these materials. In nanocrystalline materials, crystalline and grain-boundary were considered as two separate phases. The mechanical properties of the crystalline phase were modeled using viscoplastic constitutive equations, which take dislocation density evolution and diffusion creep into account, while an elasto-viscoplastic model based on diffusion mechanism was used for the grain boundary phase. For microcrystalline materials, the surface-to-volume ratio of the grain boundaries is low enough to ignore its contribution to the plastic deformation. Therefore, the grain boundary phase was not considered in microcrystalline materials and the mechanical properties of the crystalline phase were modeled using an appropriate dislocation density based constitutive equation. Finally, the constitutive equations for polycrystalline materials were implemented into a finite-element code and the results obtained from the proposed constitutive equations were compared with the experimental data for polycrystalline copper and good agreement was observed.






M. Jafari et al., "Modeling of the Plastic Deformation of Polycrystalline Materials in Micro and Nano Level Using Finite Element Method", Journal of Nano Research, Vol. 22, pp. 41-60, 2013

Online since:

May 2013




[1] C. Keller, A.M. Habraken, L. Duchene, Finite element investigation of size effects on the mechanical behavior of nickel single crystals, Materials Science and Engineering A 550 (2012) 342– 349.

DOI: 10.1016/j.msea.2012.04.085

[2] H. Gleiter, Nanocrystalline materials, Prog. Mater. Sci. 33 (1989) 223-315.

[3] M.A. Meyers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials, Prog. Mater. Sci. 51 (2006), 427–556.

[4] J. Li, A.K. Soh, Modeling of the plastic deformation of nanostructured materials with grain size gradient. Int. J. Plasticity (2012), http: /dx. doi. org/10. 1016/j. ijplas. 2012. 06. 004.

[5] C. Suryanarayana, Nanocrystalline materials, Intl Mat R. 40 (1995) 41–64.

[6] P.G. Sanders, J.A. Eastman, J.R. Weertman, Elastic and tensile behavior of nanocrystalline copper and palladium, Acta Mater. 45 (1997) 4019–4025.

DOI: 10.1016/s1359-6454(97)00092-x

[7] J. Zhou, Z. Li, R. Zhu, Y. Li, Z. Zhang, A mixtures-based model for the grain size dependent mechanical behavior of nanocrystalline materials, mat pro tec 197 (2008) 325–336.

[8] Y.J. Wei, C. Su, L. Anand, A computational study of the mechanical behavior of nanocrystalline fcc metals, Acta Mater. 54 (2006) 3177–3190.

DOI: 10.1016/j.actamat.2006.03.007

[9] J. Kadkhodapour, S. Ziaei-Rad, F. Karimzadeh, Finite-element modeling of rate dependent mechanical properties in nanocrystalline materials, Com. Mater. Sci. 45 (2009) 1113–1124.

DOI: 10.1016/j.commatsci.2009.01.014

[10] Y.M. Wang, E. Ma, Strain hardening, strain rate sensitivity, and ductility of nanostructured metals, Mater. Sci. Eng. A. 375-377 (2004) 46-52.

DOI: 10.1016/j.msea.2003.10.214

[11] Z. Jiang, X. Liu, G. Li, Q. Jiang, J. Lian, Strain rate sensitivity of a nanocrystalline Cu synthesized by electric brush plating, Appl. Phys. Lett. 88 (2006) 143115-143118.

DOI: 10.1063/1.2193467

[12] Y. Wei, A.F. Bower, H. Gao, Enhanced strain-rate sensitivity in fcc nanocrystals due to grainboundary diffusion and sliding, Acta Mater. 56 (2008) 1741-1752.

DOI: 10.1016/j.actamat.2007.12.028

[13] P. Valentini, W.W. Gerberich, T. Dumitrica, Phase-Transition Plasticity Response in Uniaxially Compressed Silicon Nanospheres, Phys. Rev. Lett. 99 (2007) 175701-175705.

DOI: 10.1103/physrevlett.99.175701

[14] C. Herring, Diffusional viscosity of a polycrystalline solid, J. appl. Phys. 21 (1950) 437-445.

[15] R.L. Coble, Model for Boundary Diffusion-Controlled Creep in Polycrystalline Materials, J. appl. Phys. 34 (1963) 1679-1682.

[16] H. Van Swygenhoven, M. Spaczer, A. Caro, Microscopic description of plasticity in computer generated metallic nanophase samples: a comparison between Cu and Ni, Acta Mater. 47 (1999) 3117-3126.

DOI: 10.1016/s1359-6454(99)00109-3

[17] V. Yamakov, D. Wolf, S.R. Phillpot, H. Gleiter, Grain-boundary diffusion creep in nanocrystalline palladium by molecular-dynamics simulation, Acta Mater. 50 (2002) 61-73.

DOI: 10.1016/s1359-6454(01)00329-9

[18] H.S. Kim, Y. Estrin, Phase mixture modeling of the strain rate dependent mechanical behavior of nanostructured materials, Acta Mater. 53 (2005) 765–772.

DOI: 10.1016/j.actamat.2004.10.028

[19] F. Karimzadeh, S. Ziaei-rad, S. Adibi, Modeling consideration and material properties evaluation in analysis of carbon nano-tube composite, Metall. Mater. Trans. B 38 (2007) 695–705.

DOI: 10.1007/s11663-007-9065-y

[20] H.S. Kim, Y. Estrin, M.B. Bush, Plastic deformation behavior of fine-grained materials. Acta Mater. 48 (2000) 493–504.

DOI: 10.1016/s1359-6454(99)00353-5

[21] M.A. Meyers, E. Ashworth, Model for the effect of grain size on the yield stress of metals, Philos. Mag. A: Phys. Condens. Mat. Defects Mech. Prop. 46 (1982)737–759.

[22] M. Delince, Y. Brechet, J.D. Embury, M.G.D. Geers, P.J. Jacques, T. Pardoen, Structure-property optimization of ultrafine-grained dual-phase steels using a micro structure-based strain hardening model, Acta Mater. 55 (2007) 2337–2350.

DOI: 10.1016/j.actamat.2006.11.029

[23] U.F. Kocks, H. Mecking, Physics and phenomenology of strain hardening: the FCC case, Prog. Mater. Sci. 48 (2003) 171–273.

[24] Y. Estrin, L.S. Toth, A. Molinari, Y. Brechet, A dislocation-based model for all hardening stages in large strain deformation, Acta Mater. 46 (1998) 5509–5522.

DOI: 10.1016/s1359-6454(98)00196-7

[25] Y. Estrin, Dislocation-density-related constitutive modeling, in: A.S. Krausz, K. Krausz (Eds. ), Unified Constitutive Laws of Plastic Deformation, Academic Press, San Diego, CA, 1996, p.69–106.

DOI: 10.1016/b978-012425970-6/50003-5

[26] U.F. Kocks, Laws for work-hardening and low temperature creep, J. Eng. Mater. Tech. 98 (1976) 76–85.

DOI: 10.1115/1.3443340

[27] H. Mecking, U.F. Kocks, Kinetics of flow and strain-hardening, Acta Mater. 29 (1981) 1865–1875.

DOI: 10.1016/0001-6160(81)90112-7

[28] D. Peirce, C.F. Shih, A. Needleman, A tangent modulus method for rate dependent solids, Comput. Struct. 18 (1984) 875–887.

DOI: 10.1016/0045-7949(84)90033-6

[29] F. Dunne, N. Petrinic, Introduction to Computational Plasticity, Oxford University Press, (2005).

[30] H.J. Frost, M.F. Ashby, Deformation Mechanism Maps: the Plasticity and Creep of Metals and Ceramics, first ed., Pergamon Press, Oxford, (1982).

[31] B. Burton, G.W. Greenwood, The Contribution of Grain-Boundary Diffusion to Creep at Low Stresses, Metal. Sci. 4 (1970) 215-218.

DOI: 10.1179/msc.1970.4.1.215

[32] L. Zhu, J. Lu., Modelling the plastic deformation of nanostructured metals with bimodal grain size distribution, Int. J. Plast. 30–31 (2012) 166–184.

DOI: 10.1016/j.ijplas.2011.10.003

[33] C.W. Sinclair, W.J. Poole, Y. Brechet, A model for the grain size dependent work hardening of copper, Scripta Mater. 55 (2006) 739–742.

DOI: 10.1016/j.scriptamat.2006.05.018

[34] O. Bouaziz, S. Allain, C. Scott, Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels, Scripta Mater. 58 (2008) 484–487.

DOI: 10.1016/j.scriptamat.2007.10.050

[35] A.P. Brahme, K. Inal, R.K. Mishra, S. Saimoto, The backstress effect of evolving deformation boundaries in FCC polycrystals, Int. J. Plast. 27 (2011) 1252–1266.

DOI: 10.1016/j.ijplas.2011.02.006

[36] S. Mercier, A. Molinari, Y. Estrin, Grain size dependence of strength of nanocrystalline materials as exemplified by copper: an elastic–viscoplastic modeling approach, J. Mater. Sci. 42 (2007) 1455–1465.

DOI: 10.1007/s10853-006-0670-y

[37] C.J. Youngdahl, P.G. Sanders, J.A. Eastman, J.R. Weertman, Compressive yield strengths of nanocrystalline Cu and Pd, Scr. Mater. 37 (1997) 809–813.

DOI: 10.1016/s1359-6462(97)00157-7

[38] D.J. Lloyd, Deformation of fine-grained aluminium alloys, Metal. Sci. 14 (1980) 193-198.

Fetching data from Crossref.
This may take some time to load.