Rapid and Clean Biomimetic Synthesis of Bimetallic Au-Ag Nanoparticles Using an otherwise Worthless and Noxious Weed Ipomoea (Ipomoea carnea)


Article Preview

In a first report of its type, gainful utilization of the obnoxious weed ipomoea (Ipomoea carnea; also known as: I. fistulosa) has been achieved by developing a procedure on its basis for clean-green one pot synthesis of bimetallic Au-Ag nanoparticles. In it the leaf and the stem extracts of the weed serve as reducing as well as stabilizing agents. With the support of Scanning Electron Microscopy, Confocal Raman Spectroscopy, and X-ray based techniques, the effect of varying metal: extract stoichiometry, temperature, and stirring on controlling the shape and size of the nanoparticles has been studied. Increase in reaction temperature is seen to favour speedier formation of nanoparticles, and of smaller average size, than occurs at ambient temperatures (27±2°C). Higher extract: metal ratios also lead to nanoparticles of larger average size. When Ag (I) and Au (III) salts are used in equal molar ratios, it generates sphere-shaped nanoparticles. All-in-all, the present work offers a non-polluting, energy saving, and cost effective route for the fabrication of bimetallic Au-Ag nanoparticles. The study indirectly provides a means of controlling ipomoea, thereby offering a means to reduce the ecological degradation that is caused by the weed.






S. U. Ganaie et al., "Rapid and Clean Biomimetic Synthesis of Bimetallic Au-Ag Nanoparticles Using an otherwise Worthless and Noxious Weed Ipomoea (Ipomoea carnea)", Journal of Nano Research, Vol. 31, pp. 1-14, 2015

Online since:

April 2015




* - Corresponding Author

[1] P.S. Ganesh, R. Sanjeevi, S. Gajalakshmi, E.V. Ramasamy, S.A. Abbasi, Recovery of methane-rich gas from solid-feed anaerobic digestion of Ipomoea (Ipomoea carnea). Bioresource Technology 99 (2008) 812-818.

DOI: https://doi.org/10.1016/j.biortech.2007.01.024

[2] S. Cao, R.C. Guzza, J. H. Wisse, J .S. Miller, R. Evans, D.G.I. Kingston, Ipomoeassins A-E, cytotoxic macrocyclic glicoresins from the leaves of Ipomoea squamosa from the Suriname rainforest. J Nat Prod 68 (2005) 487-492.

DOI: https://doi.org/10.1021/np049629w

[3] M. Meira, E.P. Silva, J.M. David, J. P. David, Review of the genus Ipomoea: traditional uses chemistry, and biological applications. Brazilian Journal of Pharmacognosy 22 (2012) 682-713.

DOI: https://doi.org/10.1590/s0102-695x2012005000025

[4] J. D. Lima, W. D. Moraes, Allelopathic potential of Ipomoea fistulosa on the germination of lettuce and tomato. Acta Scientiarum-Agronomy 30 (2008) 409-413.

[5] I.M. Hueza, J.L. Guerra, M. Haraguchi, N. Asano, S.L. Górniak, The role of alkaloids in Ipomoea carnea toxicosis: A study in rats. Exp. Toxicol. Pathol. 57 (2005) 53-58.

DOI: https://doi.org/10.1016/j.etp.2005.02.004

[6] S. Górniak, A. Gotardo, J. Pfister, The effects of Ipomoea carnea on neonate behavior: A study in goats. Toxicol. Lett. 196 (2010) S186.

DOI: https://doi.org/10.1016/j.toxlet.2010.03.634

[7] M. Haraguchi, S.L. Gorniak, K. Ikeda,Y. Minami, A. Kato, A. A. Watson, R.J. Nash, R.J. Molyneux, N. Asano, Alkaloidal components in the poisonous plant, Ipomoea carnea (Convolvulaceae). J. Agric Food Chem 51 (2003) 4995-5000.

DOI: https://doi.org/10.1021/jf0341722

[8] D. Konwar, R. Kathaki, M. Saikia, Production of solid fuel from Ipomoea carnea wood. Energy Sources Part A-recovery Utilization and Environmental Effects. 29 (2007) 817-822.

[9] W. Drube. R. Treusch, T. K. Sham, A. Bzowski, A. V. Soldatov, Sub lifetime-resolution Ag L3-edge XANES studies of Ag-Au alloys. Phys. Rev. B, 58(1998) 6871.

DOI: https://doi.org/10.1103/physrevb.58.6871

[10] K. Yano, V. Nandwana, G.S. Chaubey, N. Poudyal, S. Kang, H. Arami, J. Griffs, J.P. Liu, Synthesis and characterization of magnetic FePt/Au core/shell nanoparticles. J. Phys. Chem. 113 (2009) 13088-13091.

DOI: https://doi.org/10.1021/jp901985u

[11] J. H. Liu, A. Q. Wang, Y. S. Chi, H. P. Lin, C. Y. J. Mou, Synergistic effect in an Au-Ag alloy nanocatalyst: CO oxidation. Phys. Chem. B, 109 (2005) 40.

[12] Y. Sun, B. Wiley, Z. Li, Y. Xia, Synthesis and optical properties of nanorattles and multiple-walled nanoshells/nanotubes made of metal alloys. J. Am. Chem. Soc. 126 (2004) 9399.

DOI: https://doi.org/10.1021/ja048789r

[13] N. R. Rao, G. U. Kulkarni, P. J. Thomas, P. P. Edwards, Size-Dependent Chemistry: Properties of Nanocrystals Chem. Eur. J. 8 (2002) 28.

[14] N. A. Begum, S. Mondal, R. Basu, I.S. Laskar, D. Mandal, Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts. Colloids Surf. B: Biointerf. 71(2009) 113.

DOI: https://doi.org/10.1016/j.colsurfb.2009.01.012

[15] S. Mondal, N. Roya, A. Rajibul, I. S. Laskara., S. Basub., D. Mandal., N. A. Begum, Biogenic synthesis of Ag, Au and bimetallic Au/Ag alloy nanoparticles using aqueous extract of mahogany (Swietenia mahogani JACQ. ) leaves. Colloids Surf. B: Biointerf 82 (2011).

DOI: https://doi.org/10.1016/j.colsurfb.2010.10.007

[16] K. Govindaraju, S.K. Basha, V.G. Kumar, Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. Journel of material Science 43 (2008) 5115-5122.

DOI: https://doi.org/10.1007/s10853-008-2745-4

[17] D. Philip, Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim Acta Part A 73 (2009) 374–381.

DOI: https://doi.org/10.1016/j.saa.2009.02.037

[18] E. Castro-Longoriaa, R. Alfredo, M. V. Nestorb, A. Borja, Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf. B: Biointerf. 83 (2010) 42–48.

DOI: https://doi.org/10.1016/j.colsurfb.2010.10.035

[19] M. Moshfegh, H. Forootanfar, B. Zare, A.R. Shahverdi, G. Zarrini, M.A. Faramarzi, Biological Synthesis of Au, Ag and Au-Ag bimetallic nanoparticles by α-amylase. Digest Journal of Nanomaterials and Biostructure. 6 (2011) 1419-1426.

[20] S.S. Shankar, A. Rai, A. Ahmad, M. Sastry, Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Colloids Surf. B: Biointerf. 275 (2004) 496-502.

DOI: https://doi.org/10.1016/j.jcis.2004.03.003

[21] J. Anuradha, T. Abbasi, S.A. Abbasi, Rapid and reproducible' Green' synthesis of silver nanoparticles of consistent shape and size using Azadirachita indica. Res. J. of Biotech. 6 (2011) 69-70.

[22] D.S. Sheny, J. Mathew, D. Philip, Phytosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Spectrochim Acta A. (2011) 79: 254.

DOI: https://doi.org/10.1016/j.saa.2011.02.051

[23] N. Roy, M.N. Alam, S. Mondal, Sk,I., Laskar, R.A., S. Das, D. Mondal, N.A. Begum, Exploring Indian Rosewood as a promising biogenic tool for the synthesis of metal nanoparticles with tailor- made morphologies. Process Biochemistry. 47 (2012).

DOI: https://doi.org/10.1016/j.procbio.2012.05.009

[24] C. Tamuly, M. Hazarika, S. Borahb, R. Manash, M. P. Boruah, In situ biosynthesis of Ag, Au and bimetallic nanoparticles using Piper pedicellatum C. DC: Green chemistry approach. Colloids Surf. B: Biointerf. 102 (2013) 627-634.

DOI: https://doi.org/10.1016/j.colsurfb.2012.09.007

[25] A. A. AbdelHamid, M. A. Al-Ghobashy, M. Fawzy, M.B. Mohamed, M.S.A. Abdel-Mottaleb, Phytosynthesis of Au, Ag, and Au-Ag bimetallic nanoparticles using aqueous extract of Sago pondweed (Potamogeton pectinatus). ACS Sustainable Chem. Eng. (2013).

DOI: https://doi.org/10.1021/sc4000972

[26] A. Rai, M. Chaudhary, A. Ahmad, S. Bhargava, M. Sastry, Synthesis of triangular Au core-Ag shell nanoparticles. Materials Research Bulletin 42 (2007) 1212-1220.

DOI: https://doi.org/10.1016/j.materresbull.2006.10.019

[27] J. Y. Song, B. S. Kim, Biological synthesis of bimetallic Au/Ag nanoparticles using Persimmon (Diopyros kaki) leaf extract. Korean J. Chem. Eng., 25 (2007) 808-811.

DOI: https://doi.org/10.1007/s11814-008-0133-z

[28] J. Jacob, T. Mukherjee, S. Kapoor, A simple approach for facile synthesis of Ag, anisotropic Au and bimetallic (Ag/Au) nanoparticles using cruciferous vegetable extracts. Material Sciences and Engineering C 32 (2012)1827-1834.

DOI: https://doi.org/10.1016/j.msec.2012.04.072

[29] G. Zhang, M. Du, Q. Li, X., Li, J. Huang, X. Jiang, D. Sun, Green synthesis of Au–Ag alloy nanoparticles using Cacumen platycladi extract. RSC Advances, 3 (2013) 1878.

DOI: https://doi.org/10.1039/c2ra22442a

[30] S. Siddhanta, C. Narayana, Surface Enhanced Raman Spectroscopy of Proteins: Implications for Drug Designing. Nanometer nanotechnol, 2 (2012).

[31] M. P. Mallin, C. J. Murphy, Solution-phase synthesis of sub-10 nm Au-Ag alloy nanoparticles, Nano Leters, 2 (2002) 1235-123.

DOI: https://doi.org/10.1021/nl025774n