High-k MNOS-Like Stacked Dielectrics for Non-Volatile Memory Application

Abstract:

Article Preview

Charge-trapping memories such as SONOS and MONOS have attracted considerable attention as promising alternatives for next-generation flash memories due to dielectric layer’s scalability, process simplicity, power economy, operation versatility. Nevertheless, the continued miniaturization of the devices forces an application of high-k dielectrics. In this work high-k stacked dielectric structures based on the combination of Hf-based and SiNx materials were fabricated. Their structural and electrical properties versus deposition conditions are studied by means of FTIR-ATR and high-resolution TEM techniques. All samples demonstrated smooth surface (roughness below 1 nm) and abrupt interfaces between the different stacked layers. No crystallization of Hf-based layers was observed after annealing at 800°C for 30 min, demonstrating their amorphous nature and phase stability upon annealing. Electrical characterization was carried out for all samples through capacitance-voltage (C-V) measurements of MIS capacitors. Uniform C-V characteristics were measured along the samples for all stacks. Besides, significant flat-band hysteresis due to charging of the stacks caused by carrier injection from the substrate was observed for the structures with pure HfO2 layers.

Info:

Periodical:

Edited by:

Prof. Alexei N. Nazarov, Prof. Volodymyr S. Lysenko, Prof. Denis Flandre, Dr. Yuri V. Gomeniuk

Pages:

121-133

Citation:

L. Khomenkova et al., "High-k MNOS-Like Stacked Dielectrics for Non-Volatile Memory Application", Journal of Nano Research, Vol. 39, pp. 121-133, 2016

Online since:

February 2016

Export:

Price:

$38.00

* - Corresponding Author

[1] S. Gerardin, A. Paccagnella, Present and Future Non-Volatile Memories for Space, IEEE Trans. Nucl. Sci. 57 (2010) 3016-3039.

DOI: https://doi.org/10.1109/tns.2010.2084101

[2] M. L. French, C. Y. Chen, H. Sathianathan, M. H. White, Design and scaling of a SONOS multidielectric device for nonvolatile memory applications, IEEE Trans. Components, Packaging and Manufacturing Technology, Part A, 17 (1994) 390-397.

DOI: https://doi.org/10.1109/95.311748

[3] X. Wang, J. Liu, W. Bai, D. L. Kwong, A novel MONOS-type nonvolatile memory using high-κ dielectrics for improved data retention and programming speed, IEEE Trans. Electron Dev. 51 (2004) 597-602.

DOI: https://doi.org/10.1109/ted.2004.824684

[4] M. S. Joo, B. J. Cho, C. C. Yeo, D. S. H. Chan, S. J. Whoang, S. Matthew, L. K. Bera, N. Bala, D. L. Kwong, Formation of hafnium-aluminum-oxide gate dielectric using single cocktail liquid source in MOCVD process, IEEE Trans. Electron Dev. 50 (2003).

DOI: https://doi.org/10.1109/ted.2003.816920

[5] H. -K. Fang, K. -S. Chang-Liao, C. -Y. Chen, H. -W. Ho, Effects of HfO2/SiON/SiN stacked trapping layer on operation characteristics of poly-Si flash memory devices, Microel. Eng. 138 (2015) 107-110.

DOI: https://doi.org/10.1016/j.mee.2015.02.044

[6] H.K. Kim, I-H. Yu, J.H. Lee, Ch. S. Hwang, Interfacial Dead-Layer Effects in Hf-Silicate Films with Pt or RuO2 Gates, ACS Appl. Mater. Interfaces 5 (2013) 6769-6772.

DOI: https://doi.org/10.1021/am401842h

[7] R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, M. Metz, High-k/metal-gate stack and its MOSFET characteristics, IEEE Electron Device Lett. 25 (2004) 408-410.

DOI: https://doi.org/10.1109/led.2004.828570

[8] M.S. Kim, Y.D. Ko, M. Yun, J.H. Hong, M.C. Jeong, J.M. Myoung, I. Yun, Characterization and process effects of HfO2 thin films grown by metal-organic molecular beam epitaxy, Mater. Sci. Eng. B 123 (2005) 20-30.

DOI: https://doi.org/10.1016/j.mseb.2005.06.012

[9] A.C. Jones, P.R. Chalker, Some recent developments in the chemical vapour deposition of electroceramic oxides, J. Phys. D: Appl. Phys. 36 (2003) R80-R96.

[10] M. Lemberger, A. Paskaleva, S. Zürcher, A.J. Bauer, L. Frey, H. Ryssel, Electrical properties of hafnium silicate films obtained from a single-source MOCVD precursor, Microel. Reliab. 45 (2005) 819-822.

DOI: https://doi.org/10.1016/j.microrel.2004.11.040

[11] T. Nishide, S. Honda, M. Matsuura, M. Ide, Surface, structural and optical properties of solgel derived HfO2 films, Thin Solid Films 371 (2000) 61-65.

DOI: https://doi.org/10.1016/s0040-6090(00)01010-5

[12] M.G. Blanchin, B. Canut, Y. Lambert, V.S. Teodorescu, A. Barau, M. Zaharescu, Structure and dielectric properties of HfO2 films prepared by a sol-gel route, J. Sol-Gel Sci. Technol. 47 (2008) 165-172.

DOI: https://doi.org/10.1007/s10971-008-1758-4

[13] H. Hu, C.X. Zhu, Y.F. Lu, Y.H. Wu, T. Liew, M.F. Li, B.J. Cho, W.K. Choi, N. Yakovlev, Physical and electrical characterization of HfO2 metal-insulator-metal capacitors for Si analog circuit applications, J. Appl. Phys. 94 (2003) 551-557.

DOI: https://doi.org/10.1063/1.1579550

[14] S.S. Hullavarad, D.E. Pugel, E.B. Jones, R.D. Vispute, T. Venkatesan, Low Leakage Current Transport and High Breakdown Strength of Pulsed Laser Deposited HfO2/SiC Metal-InsulatorSemiconductor Device Structures, J. Electron. Mater. 36 (2007).

DOI: https://doi.org/10.1007/s11664-006-0007-2

[15] L. Khomenkova, C. Dufour, P. -E. Coulon, C. Bonafos, F. Gourbilleau, High-k Hf-based layers grown by RF magnetron sputtering, Nanotechnology 21 (2010) 095704.

DOI: https://doi.org/10.1088/0957-4484/21/9/095704

[16] L. Khomenkova, X. Portier, J. Cardin, F. Gourbilleau, Thermal stability of high-k Si-rich HfO2 layers grown by RF magnetron sputtering, Nanotechnology 21 (2010) 285707.

DOI: https://doi.org/10.1088/0957-4484/21/28/285707

[17] L. Khomenkova, X. Portier, A. Slaoui, F. Gourbilleau, Charge Trapping in Hafnium Silicate Films with Modulated Composition and Enhanced Permittivity, Adv. Mat. Res. 854 (2014) 125133.

DOI: https://doi.org/10.4028/www.scientific.net/amr.854.125

[18] E. Talbot, M. Roussel, L. Khomenkova, F. Gourbilleau, P. Pareige, Atomic scale microstructures of high-k HfSiO thin films fabricated by magnetron sputtering, Mat. Sci. Eng. B 177 (2012) 717-720.

DOI: https://doi.org/10.1016/j.mseb.2011.10.011

[19] D. Khomenkov, Y. -T. An, X. Portier, C. Labbe, F. Gourbilleau, L. Khomenkova, LightEmitting and Structural Properties of Si-rich HfO2 Thin Films Fabricated by RF Magnetron Sputtering, MRS Proc. 1617 (2013) 85-91.

DOI: https://doi.org/10.1557/proc-1160-h05-08

[20] L. Khomenkova, M. Baran, O. Kolomys, V. Strelchuk, A.V. Kuchuk, V.P. Kladko, J. Jedrzejewski, I. Balberg, Y. Goldstein, P. Marie, F. Gourbilleau, N. Korsunska, Comparative Investigation of Structural and Optical Properties of Si-Rich Oxide Films Fabricated by Magnetron Sputtering, Adv. Mater. Res. 854 (2014).

DOI: https://doi.org/10.4028/www.scientific.net/amr.854.117

[21] L. Khomenkova, X. Portier, M. Carrada, C. Bonafos, B. S. Sahu, A. Slaoui, F. Gourbilleau, Ge-doped Hafnia-based Dielectrics for Non-Volatile Memory Applications, ECS Trans. 45(3) (2012) 331-344.

DOI: https://doi.org/10.1149/1.3700897

[22] D. Lehninger, L. Khomenkova, C. Röder, G. Gärtner, B. Abendroth, J. Beyer, F. Schneider, D.C. Meyer, J. Heitmann, Ge Nanostructures Embedded in ZrO2 Dielectric Films for Nonvolatile Memory Applications, ECS Trans. 66(4) (2015) 203-212.

DOI: https://doi.org/10.1149/06604.0203ecst

[23] B.S. Sahu, F. Gloux, A. Slaoui, M. Carrada, D. Muller, J. Groenen, C. Bonafos, S. Lhostis, Effect of ion implantation energy for the synthesis of Ge nanocrystals in SiN films with HfO2/SiO2 stack tunnel dielectrics for memory application, Nanoscale Res. Lett. 6 (2011).

DOI: https://doi.org/10.1186/1556-276x-6-177

[24] J.H. Choi, Y. Mao, J.P. Chang, Development of hafnium based high-k materials, Mat. Sci. Eng. R 72 (2011) 97-136.

[25] J.P. Maria, D. Wicaksana, A.I. Kingon, B. Busch, H. Schulte, E. Garfunkel, T. Gustafsson, High temperature stability in lanthanum and zirconia-based gate dielectrics, J. Appl. Phys. 90 (2001) 3476-3482.

DOI: https://doi.org/10.1063/1.1391418

[26] M. Toledano-Luque, M. L. Lucía, A. del Prado, E. San Andrés, I. Mártil, G. González-Díaz, Optical spectroscopic study of the SiN∕HfO2 interfacial formation during rf sputtering of HfO2, Appl. Phys. Lett. 91 (2007) 191502.

DOI: https://doi.org/10.1063/1.2811958

[27] L. -P. Feng, Z. -T. Liu, Q. -J. Liu, H. Tian, First principles calculations of electronic and dielectric properties of hafnium silicates, IOP Conf. Series: Mater. Sci. Eng. 12 (2010) 012013.

DOI: https://doi.org/10.1088/1757-899x/12/1/012013

[28] http: /www. horiba. com/scientific/products/ellipsometers/software.

[29] D.A.G. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen, Annalen der Physik 416 (1935) 636-664.

DOI: https://doi.org/10.1002/andp.19354160705

[30] A.R. Forouhi, I. Bloomer, Optical dispersion relations for amorphous semiconductors and amorphous dielectrics, Phys. Rev. B. 34 (1986) 7018.

DOI: https://doi.org/10.1103/physrevb.34.7018

[31] G.E. Jelisson Jr, F.A. Modine, Parameterization of the optical functions of amorphous materials in the interband region, Appl. Phys. Lett. 69 (1996) 371-373.

DOI: https://doi.org/10.1063/1.118064

[32] D.A. Neumayer, E. Cartier, Materials characterization of ZrO2-SiO2 and HfO2-SiO2 binary oxides deposited by chemical solution deposition, J. Appl. Phys. 90 (2001) 1801-1808.

DOI: https://doi.org/10.1063/1.1382851

[33] C.T. Kirk, Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica, Phys. Rev. B. 38 (1988) 1255-1273.

DOI: https://doi.org/10.1103/physrevb.38.1255

[34] P. Lange, Evidence for disorder-induced vibrational mode coupling in thin amorphous SiO2 films, J. Appl. Phys. 66 (1989) 201-204.

[35] H. Ono, T. Ikarashi, K. Ando, T. Kitano, Infrared studies of transition layers at SiO2/Si interface, J. Appl. Phys. 84 (1998) 6064-6069.

DOI: https://doi.org/10.1063/1.368917

[36] H. García, S. Dueñas, H. Castán, A. Gómez, L. Bailón, M. Toledano-Luque, A. del Prado, I. Mártil, G. González-Díaz, Influence of interlayer trapping and detrapping mechanisms on the electrical characterization of hafnium oxide/silicon nitride stacks on silicon, J. Appl. Phys. 104 (2008).

DOI: https://doi.org/10.1063/1.3013441

[37] N.V. Nguyen, A.V. Davydov, D. Chandler-Horowitz, M.F. Frank, Sub-bandgap defect states in polycrystalline hafnium oxide and their suppression by admixture of silicon, Appl. Phys. Lett. 87 (2005) 192903.

DOI: https://doi.org/10.1063/1.2126136

[38] G. Lucovsky, J. Lüning, N.A. Stoute, H. Seo, C.L. Hinkle, B. Ju, Band Edge Traps at Spectroscopically-Detected O-Atom Vacancies in Nanocrystalline ZrO2 and HfO2: An Engineering Solution for Elimination of O-Atom Vacancy Defects in Non-crystalline Ternary Silicate Alloys, ECS Trans. 1(5) (2006).

DOI: https://doi.org/10.1149/1.2209287

[39] K. -Ch. Lin, S. -Ch. Lee, The structural and optical properties of a-SiNx: H prepared by plasmaenhanced chemical-vapor deposition, J. Appl. Phys. 72 (1992) 5474-5482.

[40] O. Debieu, R. Pratibha Nalini, J. Cardin, X. Portier, J. Perrière, F. Gourbilleau, Structural and optical characterization of pure Si-rich nitride thin films, Nanoscale Res. Lett. 8 (2013) 31.

DOI: https://doi.org/10.1186/1556-276x-8-31