Electrical Characterization and Parameter Extraction of Junctionless Nanowire Transistors

Abstract:

Article Preview

This article presents a review of various methods for extracting the key parameters of junctionless (JL) MOSFETs, namely, the threshold voltage, flat-band voltage, doping concentration, carrier mobility, and parasitic series resistance. The applicability and limitations of different methods are analyzed using numerical simulations and experimental data for planar and tri-gate nanowire JL transistors with various nanowire widths.

Info:

Periodical:

Edited by:

Prof. Alexei N. Nazarov, Prof. Volodymyr S. Lysenko, Prof. Denis Flandre, Dr. Yuri V. Gomeniuk

Pages:

17-33

Citation:

T. Rudenko et al., "Electrical Characterization and Parameter Extraction of Junctionless Nanowire Transistors", Journal of Nano Research, Vol. 39, pp. 17-33, 2016

Online since:

February 2016

Export:

Price:

$41.00

* - Corresponding Author

[1] International technology roadmap for semiconductors, http: /public. itrs. net.

[2] H. -S. Wong, D. Frank, P. Solomon, Device design considerations for double-gate, ground-plane, and single-gate ultra-thin SOI MOSFETs at the 25 nm channel length, IEDM Tech. Dig. (1998) 407-410.

DOI: https://doi.org/10.1109/iedm.1998.746385

[3] J.T. Park, J. -P. Colinge, C. H. Diaz, Pi-gate SOI MOSFET. IEEE Electron Device Letters, 22 (2001) 405-407.

DOI: https://doi.org/10.1109/55.936358

[4] R. Chau, B. Doyle, J. Kavalieros, D. Barlage, A. Murthy, M. Doczy, R. Arghavani, S. Datta: Advanced depleted-substrate transistors: single-gate, double-gate and tri-gate. Extended Abstracts of the International Conference on Solid State Devices and Materials (SSDM), 68 (2002).

DOI: https://doi.org/10.7567/ssdm.2002.d-1-1

[5] J.T. Park and J.P. Colinge: Multiple-gate SOI MOSFETs: device design guidelines. IEEE Transactions on Electron Devices 49 (2002) 2222-2229.

DOI: https://doi.org/10.1109/ted.2002.805634

[6] B. Yu, L. Chang, S. Ahmed, H. Wang, S. Bell, C. -Y. Yang, C. Tabery, C. Ho, Q. Xiang, T. -J. King, J. Bokor, C. Hu, M. -R. Lin, and D. Kyser, FinFET scaling to 10 nm gate length", in IEDM Tech. Dig., Dec. 2002, pp.251-254.

DOI: https://doi.org/10.1109/iedm.2002.1175825

[7] C. -W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, and J. -P. Colinge, Junctionless multigate field-effect transistor, Appl. Phys. Lett. 94 (2009) 053511-053513.

DOI: https://doi.org/10.1063/1.3079411

[8] J. P. Colinge, C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O'Neill, A. Blake, M. White, A. M. Kelleher, B. McCarthy, and R. Murphy, Nanowire transistors without junctions, Nature Nanotechnology, 5 (2010) 225-229.

DOI: https://doi.org/10.1038/nnano.2010.15

[9] C. –W. Lee, I. Ferain, A. Afzalian, R. Yan, N. D. Akhavan, P. Razavi, and J. -P. Colinge, Solid-State Electronics, Performance estimation of junctioless multigate transistors, 54 (2010) 97-103.

DOI: https://doi.org/10.1016/j.sse.2009.12.003

[10] C. W. Lee, I. Ferain, A. Kranti, N. D. Akhavan, P. Razavi, R. Yan, R. Yu, B. O'Neill, A. Blake, M. White, A. M. Kelleher, B. McCarthy, S. Gheorghe, R. Murphy, and J. P. Colinge, Short-channel junctionless nanowire transistors, in Proc. Int. Conf. SSDM, 2010, p.1044.

DOI: https://doi.org/10.7567/ssdm.2010.c-9-5l

[11] S. Barraud, M. Berthome, R. Coquand, M. Casse, T. Ernst, M. -P. Samson, P. Perreau, K.K. Bourdelle, O. Faynot, and T. Poiroux, Scaling of trigate junctionless nanowire MOSFET with gate length down to 13nm, IEEE Electron Device Letters, 33 (2012).

DOI: https://doi.org/10.1109/led.2012.2203091

[12] A.B. Fowler and A. M. Hartstein, Techniques for determining threshold, Surface Sci., 98 (1980) 169-176.

[13] T. J. Krutsick, M.H. White, H. -S. Wong, and R.V. Booth, An improved method of MOSFET modeling and parameter extraction, IEEE Trans. Electron Devices, 34 (1987) 1676-1680.

DOI: https://doi.org/10.1109/t-ed.1987.23136

[14] G. Ghibaudo, New method for the extraction of MOSFET parameters, Electronics Letters, 24 (1988) 543-545.

[15] H.S. Wong, M.H. White, T. J. Krutsick, R.V. Booth, Modeling of transconductance degradation and extraction of threshold voltage in thin oxide MOSFET, Solid-State Electron., 30 (1987) 953-968.

DOI: https://doi.org/10.1016/0038-1101(87)90132-8

[16] T. Rudenko, V. Kilchytska, M.K. Md Arshad, J. –P. Raskin, A. Nazarov, and D. Flandre, On the MOSFET threshold voltage extraction by transconductance change and transconductance-to-current ratio change methods: Part I – Effect of gate-voltage-dependent mobility, IEEE Trans. Electron Devices, 58 (2011).

DOI: https://doi.org/10.1109/ted.2011.2168226

[17] R. D. Trevisoli, R. T. Doria, M. de Souza, and M. A. Pavanello, A physically-based threshold voltage defiintion, extraction and analytical model for junctionless nanowire transistors, Solid State Electron., 90 (2013) 12–17.

DOI: https://doi.org/10.1016/j.sse.2013.02.059

[18] A. A. Cunha, M. A Pavanello, R. D. Trevisoli, C. Galup-Montoro, M. C Schneider, Direct determination of threshold voltage condition in DG-MOSFETs from the gm /ID curve, Solid-State Electron., 56 (2011) 89-94.

DOI: https://doi.org/10.1016/j.sse.2010.10.011

[19] F. Silveira, D. Flandre, and P. G. A. Jespers, A gm/ID based methodology for the design of CMOS analog circuits and its application to the synthesis of a silicon-on-insulator micropower OTA, IEEE J. Solid-State Circuit, 31 (1996) 1314–1319.

DOI: https://doi.org/10.1109/4.535416

[20] T. Rudenko, M. K. Md Arshad, J. –P. Raskin, A. Nazarov, D. Flandre and V. Kilchytska, On the gm/ID-based approaches for threshold voltage extraction in advanced MOSFETs and their application to ultra-thin body SOI MOSFETs, Solid-State Electronics 97 (2014).

DOI: https://doi.org/10.1016/j.sse.2014.04.029

[21] D. -Y. Jeon, S.J. Park, M. Mouis, M. Berthome, S. Barraud, G. -T. Kim, G. Ghibaudo, Revisited parameter extraction methodology for electrical characterization of junctionless transistors, Solid-State Electronics 90 (2013) 86-93.

DOI: https://doi.org/10.1016/j.sse.2013.02.047

[22] T. Rudenko, R. Yu, S. Barraud, K. Cherkaoui, and A. Nazarov, A method for extracting doping concentration and flat-band voltage in junctionless multigate MOSFETs using 2D electrostatic effects, IEEE Electron Device Letters, 34 (2013) 957-959.

DOI: https://doi.org/10.1109/led.2013.2268575

[23] Y. Zohta, Rapid determination of semiconductor doping profile in MOS structure, Solid-State Electron., vol. 16, (1973) 124-126.

DOI: https://doi.org/10.1016/0038-1101(73)90134-2

[24] J. Hilibrand, R. D. Gold, Determination of impurity distribution in junction diodes from capacitance-voltage measurements, RCA Review, 21 (1960), pp.245-252.

[25] E. H. Nicollian, J. R. Brews, MOS (Metal Oxide Semiconductor) physics and technology, A Wiley-Interscience publication, 1982, Chapter 9.

[26] Synopsis, Inc., Mountain View, CA, C-2009. 06 ed., Sentaurus Device Reference Manual (2009).

[27] S. E. Laux, Accuracy of an effective channel length/external resistance extraction algorithm for MOSFET's, IEEE Trans. Electron Devices, 31 (1984) 1245-1251.

DOI: https://doi.org/10.1109/t-ed.1984.21695

[28] A. Dixit, A. Kotttantharayil, N. Collaert, M. Goodwin, M. Jurczak, and K. de Meyer, Analysis of the parasitic S/D resistance in multiple-gate FETs", IEEE Trans. Electron Devices, 52 (2005) 1132-1140.

DOI: https://doi.org/10.1109/ted.2005.848098

[29] C.G. Sodini, T.W. Ekstedt, and J. L. Moll, Charge accumulation and mobility in thin dielectric MOS transistors, Solid-State Electronics, 25 (1982) 833-841.

DOI: https://doi.org/10.1016/0038-1101(82)90170-8

[30] Y. Ohno, Y. Okuto, Electron mobility in n-channel depletion-type MOS transistors, IEEE Trans. Electron Devices, 29 (1982) 190-194.

DOI: https://doi.org/10.1109/t-ed.1982.20682

[31] H. K. Sy, D. K. Desai, C. K. Ong, Electron screening and mobility in heavily doped silicon, Physica Status Solidi (b), 130 (1985) 787–792.

DOI: https://doi.org/10.1002/pssb.2221300244

[32] K. -I. Goto, T. -H. Yu, J. Wu, C. H. Diaz, J. P. Colinge, Mobility and screening effect in heavily doped accumulation-mode metal-oxide-semiconductor field-effect transistors, Appl. Phys. Lett., 101 (2012) 073503.

DOI: https://doi.org/10.1063/1.4745604

[33] T. Rudenko, A. Nazarov, I. Ferain, S. Das, R. Yu, S. Barraud, and P. Razavi, Mobility enhancement effect in heavily doped junctionless nanowire silicon-on-insulator metal oxide-semiconductor field-effect transistors, Appl. Phys. Lett. 101 (2012).

DOI: https://doi.org/10.1063/1.4767353

[34] T. Rudenko, A. Nazarov, R. Yu, S. Barraud, K. Cherkaoui, P. Razavi, G. Fagas, Electron mobility in heavily doped junctionless nanowire SOI MOSFETs, Microelectronic Eng., 109 (2013) 326–329.

DOI: https://doi.org/10.1016/j.mee.2013.03.050

[35] M. Najmzadeh, J. -M. Sallese, M. Berthomé, W. Grabinski, A.M. Ionescu, Mobility extraction assessment in GAA Si NW JL FETs with cross-section down to 5 nm, IEEE ULIS 2013, 105-108.

DOI: https://doi.org/10.1109/ulis.2013.6523512