Electrical Characterization and Parameter Extraction of Junctionless Nanowire Transistors


Article Preview

This article presents a review of various methods for extracting the key parameters of junctionless (JL) MOSFETs, namely, the threshold voltage, flat-band voltage, doping concentration, carrier mobility, and parasitic series resistance. The applicability and limitations of different methods are analyzed using numerical simulations and experimental data for planar and tri-gate nanowire JL transistors with various nanowire widths.



Edited by:

Prof. Alexei N. Nazarov, Prof. Volodymyr S. Lysenko, Prof. Denis Flandre, Dr. Yuri V. Gomeniuk




T. Rudenko et al., "Electrical Characterization and Parameter Extraction of Junctionless Nanowire Transistors", Journal of Nano Research, Vol. 39, pp. 17-33, 2016

Online since:

February 2016




* - Corresponding Author

[1] International technology roadmap for semiconductors, http: /public. itrs. net.

[2] H. -S. Wong, D. Frank, P. Solomon, Device design considerations for double-gate, ground-plane, and single-gate ultra-thin SOI MOSFETs at the 25 nm channel length, IEDM Tech. Dig. (1998) 407-410.

DOI: https://doi.org/10.1109/iedm.1998.746385

[3] J.T. Park, J. -P. Colinge, C. H. Diaz, Pi-gate SOI MOSFET. IEEE Electron Device Letters, 22 (2001) 405-407.

DOI: https://doi.org/10.1109/55.936358

[4] R. Chau, B. Doyle, J. Kavalieros, D. Barlage, A. Murthy, M. Doczy, R. Arghavani, S. Datta: Advanced depleted-substrate transistors: single-gate, double-gate and tri-gate. Extended Abstracts of the International Conference on Solid State Devices and Materials (SSDM), 68 (2002).

DOI: https://doi.org/10.7567/ssdm.2002.d-1-1

[5] J.T. Park and J.P. Colinge: Multiple-gate SOI MOSFETs: device design guidelines. IEEE Transactions on Electron Devices 49 (2002) 2222-2229.

DOI: https://doi.org/10.1109/ted.2002.805634

[6] B. Yu, L. Chang, S. Ahmed, H. Wang, S. Bell, C. -Y. Yang, C. Tabery, C. Ho, Q. Xiang, T. -J. King, J. Bokor, C. Hu, M. -R. Lin, and D. Kyser, FinFET scaling to 10 nm gate length", in IEDM Tech. Dig., Dec. 2002, pp.251-254.

DOI: https://doi.org/10.1109/iedm.2002.1175825

[7] C. -W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, and J. -P. Colinge, Junctionless multigate field-effect transistor, Appl. Phys. Lett. 94 (2009) 053511-053513.

DOI: https://doi.org/10.1063/1.3079411

[8] J. P. Colinge, C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O'Neill, A. Blake, M. White, A. M. Kelleher, B. McCarthy, and R. Murphy, Nanowire transistors without junctions, Nature Nanotechnology, 5 (2010) 225-229.

DOI: https://doi.org/10.1038/nnano.2010.15

[9] C. –W. Lee, I. Ferain, A. Afzalian, R. Yan, N. D. Akhavan, P. Razavi, and J. -P. Colinge, Solid-State Electronics, Performance estimation of junctioless multigate transistors, 54 (2010) 97-103.

DOI: https://doi.org/10.1016/j.sse.2009.12.003

[10] C. W. Lee, I. Ferain, A. Kranti, N. D. Akhavan, P. Razavi, R. Yan, R. Yu, B. O'Neill, A. Blake, M. White, A. M. Kelleher, B. McCarthy, S. Gheorghe, R. Murphy, and J. P. Colinge, Short-channel junctionless nanowire transistors, in Proc. Int. Conf. SSDM, 2010, p.1044.

DOI: https://doi.org/10.7567/ssdm.2010.c-9-5l

[11] S. Barraud, M. Berthome, R. Coquand, M. Casse, T. Ernst, M. -P. Samson, P. Perreau, K.K. Bourdelle, O. Faynot, and T. Poiroux, Scaling of trigate junctionless nanowire MOSFET with gate length down to 13nm, IEEE Electron Device Letters, 33 (2012).

DOI: https://doi.org/10.1109/led.2012.2203091

[12] A.B. Fowler and A. M. Hartstein, Techniques for determining threshold, Surface Sci., 98 (1980) 169-176.

[13] T. J. Krutsick, M.H. White, H. -S. Wong, and R.V. Booth, An improved method of MOSFET modeling and parameter extraction, IEEE Trans. Electron Devices, 34 (1987) 1676-1680.

DOI: https://doi.org/10.1109/t-ed.1987.23136

[14] G. Ghibaudo, New method for the extraction of MOSFET parameters, Electronics Letters, 24 (1988) 543-545.

[15] H.S. Wong, M.H. White, T. J. Krutsick, R.V. Booth, Modeling of transconductance degradation and extraction of threshold voltage in thin oxide MOSFET, Solid-State Electron., 30 (1987) 953-968.

DOI: https://doi.org/10.1016/0038-1101(87)90132-8

[16] T. Rudenko, V. Kilchytska, M.K. Md Arshad, J. –P. Raskin, A. Nazarov, and D. Flandre, On the MOSFET threshold voltage extraction by transconductance change and transconductance-to-current ratio change methods: Part I – Effect of gate-voltage-dependent mobility, IEEE Trans. Electron Devices, 58 (2011).

DOI: https://doi.org/10.1109/ted.2011.2168226

[17] R. D. Trevisoli, R. T. Doria, M. de Souza, and M. A. Pavanello, A physically-based threshold voltage defiintion, extraction and analytical model for junctionless nanowire transistors, Solid State Electron., 90 (2013) 12–17.

DOI: https://doi.org/10.1016/j.sse.2013.02.059

[18] A. A. Cunha, M. A Pavanello, R. D. Trevisoli, C. Galup-Montoro, M. C Schneider, Direct determination of threshold voltage condition in DG-MOSFETs from the gm /ID curve, Solid-State Electron., 56 (2011) 89-94.

DOI: https://doi.org/10.1016/j.sse.2010.10.011

[19] F. Silveira, D. Flandre, and P. G. A. Jespers, A gm/ID based methodology for the design of CMOS analog circuits and its application to the synthesis of a silicon-on-insulator micropower OTA, IEEE J. Solid-State Circuit, 31 (1996) 1314–1319.

DOI: https://doi.org/10.1109/4.535416

[20] T. Rudenko, M. K. Md Arshad, J. –P. Raskin, A. Nazarov, D. Flandre and V. Kilchytska, On the gm/ID-based approaches for threshold voltage extraction in advanced MOSFETs and their application to ultra-thin body SOI MOSFETs, Solid-State Electronics 97 (2014).

DOI: https://doi.org/10.1016/j.sse.2014.04.029

[21] D. -Y. Jeon, S.J. Park, M. Mouis, M. Berthome, S. Barraud, G. -T. Kim, G. Ghibaudo, Revisited parameter extraction methodology for electrical characterization of junctionless transistors, Solid-State Electronics 90 (2013) 86-93.

DOI: https://doi.org/10.1016/j.sse.2013.02.047

[22] T. Rudenko, R. Yu, S. Barraud, K. Cherkaoui, and A. Nazarov, A method for extracting doping concentration and flat-band voltage in junctionless multigate MOSFETs using 2D electrostatic effects, IEEE Electron Device Letters, 34 (2013) 957-959.

DOI: https://doi.org/10.1109/led.2013.2268575

[23] Y. Zohta, Rapid determination of semiconductor doping profile in MOS structure, Solid-State Electron., vol. 16, (1973) 124-126.

DOI: https://doi.org/10.1016/0038-1101(73)90134-2

[24] J. Hilibrand, R. D. Gold, Determination of impurity distribution in junction diodes from capacitance-voltage measurements, RCA Review, 21 (1960), pp.245-252.

[25] E. H. Nicollian, J. R. Brews, MOS (Metal Oxide Semiconductor) physics and technology, A Wiley-Interscience publication, 1982, Chapter 9.

[26] Synopsis, Inc., Mountain View, CA, C-2009. 06 ed., Sentaurus Device Reference Manual (2009).

[27] S. E. Laux, Accuracy of an effective channel length/external resistance extraction algorithm for MOSFET's, IEEE Trans. Electron Devices, 31 (1984) 1245-1251.

DOI: https://doi.org/10.1109/t-ed.1984.21695

[28] A. Dixit, A. Kotttantharayil, N. Collaert, M. Goodwin, M. Jurczak, and K. de Meyer, Analysis of the parasitic S/D resistance in multiple-gate FETs", IEEE Trans. Electron Devices, 52 (2005) 1132-1140.

DOI: https://doi.org/10.1109/ted.2005.848098

[29] C.G. Sodini, T.W. Ekstedt, and J. L. Moll, Charge accumulation and mobility in thin dielectric MOS transistors, Solid-State Electronics, 25 (1982) 833-841.

DOI: https://doi.org/10.1016/0038-1101(82)90170-8

[30] Y. Ohno, Y. Okuto, Electron mobility in n-channel depletion-type MOS transistors, IEEE Trans. Electron Devices, 29 (1982) 190-194.

DOI: https://doi.org/10.1109/t-ed.1982.20682

[31] H. K. Sy, D. K. Desai, C. K. Ong, Electron screening and mobility in heavily doped silicon, Physica Status Solidi (b), 130 (1985) 787–792.

DOI: https://doi.org/10.1002/pssb.2221300244

[32] K. -I. Goto, T. -H. Yu, J. Wu, C. H. Diaz, J. P. Colinge, Mobility and screening effect in heavily doped accumulation-mode metal-oxide-semiconductor field-effect transistors, Appl. Phys. Lett., 101 (2012) 073503.

DOI: https://doi.org/10.1063/1.4745604

[33] T. Rudenko, A. Nazarov, I. Ferain, S. Das, R. Yu, S. Barraud, and P. Razavi, Mobility enhancement effect in heavily doped junctionless nanowire silicon-on-insulator metal oxide-semiconductor field-effect transistors, Appl. Phys. Lett. 101 (2012).

DOI: https://doi.org/10.1063/1.4767353

[34] T. Rudenko, A. Nazarov, R. Yu, S. Barraud, K. Cherkaoui, P. Razavi, G. Fagas, Electron mobility in heavily doped junctionless nanowire SOI MOSFETs, Microelectronic Eng., 109 (2013) 326–329.

DOI: https://doi.org/10.1016/j.mee.2013.03.050

[35] M. Najmzadeh, J. -M. Sallese, M. Berthomé, W. Grabinski, A.M. Ionescu, Mobility extraction assessment in GAA Si NW JL FETs with cross-section down to 5 nm, IEEE ULIS 2013, 105-108.

DOI: https://doi.org/10.1109/ulis.2013.6523512