Enhancement of Electron Spin Relaxation Time in Thin SOI Films by Spin Injection Orientation and Uniaxial Stress


Article Preview

The electron spin properties of semiconductors are of immense interest for their potential in spin-driven applications. Silicon is a perfect material for spintronics due to a long spin lifetime. Understanding the peculiarities of the subband structure and details of spin propagation in thin silicon films in the presence of the spin-orbit interaction is under scrutiny. We have performed simulations to obtain the surface roughness limited, acoustic-and optical-phonon mediated spin relaxation time, when the film is under shear strain. The degeneracy between the non-equivalent valleys is lifted by strain, which in turn subdues the dominating inter-valley relaxation components and increases the spin lifetime. We also elaborate on the injection orientation sensitive spin relaxation model and predict that the spin relaxation time is maximum, when the spin is injected in-plane, relative to the (001) oriented silicon film.



Edited by:

Prof. Alexei N. Nazarov, Prof. Volodymyr S. Lysenko, Prof. Denis Flandre, Dr. Yuri V. Gomeniuk




J. Ghosh et al., "Enhancement of Electron Spin Relaxation Time in Thin SOI Films by Spin Injection Orientation and Uniaxial Stress", Journal of Nano Research, Vol. 39, pp. 34-42, 2016

Online since:

February 2016




* - Corresponding Author

[1] International technology roadmap for semiconductors (ITRS), http: /www. itrs. net (2013).

[2] M. Bohr, The evolution of scaling from the homogeneous era to the heterogeneous era, IEDM, p.1. 1. 1-1. 1. 6 (2011).

[3] S. Datta and B. Das, Electronic analog of the electro-optic modulator, Appl. Phys. Lett. 56(7), 665 (1990).

[4] B. Huang, D.J. Monsma, and I. Appelbaum, Coherent spin transport through a 350 micron thick silicon wafer, Phys. Rev. Lett. 99, 177209 (2007).

DOI: https://doi.org/10.1103/physrevlett.99.177209

[5] S.P. Dash, S. Sharma, R.S. Patel, M.P. de Jong, and R. Jansen, Electrical creation of spin polarization in silicon at room temperature, Nature 462, 491 (2009).

DOI: https://doi.org/10.1038/nature08570

[6] C.H. Li, O.M.J. van 't Erve, and B.T. Jonker, Electrical injection and detection of spin accumulation in silicon at 500K with magnetic metal/silicon dioxide contacts, Nature Commun. 2, 245 (2011).

DOI: https://doi.org/10.1038/ncomms1256

[7] J. Li and I. Appelbaum, Modeling spin transport in electrostatically-gated lateral-channel silicon devices: Role of interfacial spin relaxation, Phys. Rev. B 84, 165318 (2011).

DOI: https://doi.org/10.1103/physrevb.84.165318

[8] Y. Song and H. Dery, Analysis of phonon-induced spin relaxation processes in silicon, Phys. Rev. B 86, 085201 (2012).

[9] D. Osintsev, V. Sverdlov, and S. Selberherr, Electron mobility and spin lifetime enhancement in strained ultra-thin silicon films, Solid-State Electron. 112, 46 (2015).

DOI: https://doi.org/10.1016/j.sse.2015.02.007

[10] J.M. Tang, B.T. Collins, and M.E. Flatté, Electron spin-phonon interaction symmetries and tunable spin relaxation in silicon and germanium, Phys. Rev. B 85, 045202 (2012).

DOI: https://doi.org/10.1103/physrevb.85.045202

[11] P. Li and H. Dery, Spin-orbit symmetries of conduction electrons in silicon, Phys. Rev. Lett. 107, 107203 (2011).

[12] D. Osintsev, V. Sverdlov, N. Neophytou, and S. Selberherr, Valley splitting and spin lifetime enhancement in strained thin silicon films, IWCE Proc. (2014).

DOI: https://doi.org/10.1109/iwce.2014.6865824

[13] V. Sverdlov, Strain-induced effects in advanced MOSFETs, Springer (2011).

[14] M.V. Fischetti, Z. Ren, P.M. Solomon, M. Yang, and K. Rim, Six-band k⋅p calculation of the hole mobility in silicon inversion layers: Dependence on surface orientation, strain, and silicon thickness, J. Appl. Phys. 94, 1079 (2003).

DOI: https://doi.org/10.1063/1.1585120

[15] V. Sverdlov and S. Selberherr, Silicon spintronics: Progress and challenges, Physics Reports 585, 1 (2015).

[16] H. Dery, Y. Song, P. Li, and I. Zutic, Silicon spin communication, Appl. Phys. Lett. 99, 082502 (2011).

[17] J. L. Cheng, M. W. Wu, and J. Fabian, Theory of the spin relaxation of conduction electrons in silicon, Phys. Rev. Lett. 104, 016601 (2010).