Chemical Vapor Deposited Graphene for Opto-Electronic Applications


Article Preview

In this work, fabrication and characterisation of graphene photodiodes and transfer length method structures is presented. Graphene growth is carried out using a thermal chemical vapor deposition process on copper foils and subsequently transferred onto silicon-dioxide/silicon substrate. Comparison of electrical and optical characteristics of the photodiodes, which are fabricated on both n-type and p-type silicon, is shown. The photodiodes fabricated on n-type silicon show good rectifying behaviour when compared with photodiodes fabricated on p-type silicon. Spectral response of graphene photodiodes is measured to be less than 0.2 mAW-1 which is attributed to the light absorbance of 2.3% for single layer graphene. Transfer length method device structures are also fabricated and contact resistance is calculated and plotted as a function of spacing between the contacts. The calculated contact resistance (RcW) is 0.87 kΩ.µm. The latter structures are also characterised under various ambient conditions, before and after annealing. The value of contact resistance reduces from 0.87 kΩ.µm to 0.75 kΩ.µm after annealing. This reduction is attributed to the improvement in bonding between graphene and metal. Measurements under vacuum show an increase in contact resistance which is attributed to the removal of adsorbed water molecules on the surface on graphene. The sheet resistivity of graphene is calculated to be between 1.17 kΩ/□ and 3.67 kΩ/□.



Edited by:

Prof. Alexei N. Nazarov, Prof. Volodymyr S. Lysenko, Prof. Denis Flandre, Dr. Yuri V. Gomeniuk




V. Passi et al., "Chemical Vapor Deposited Graphene for Opto-Electronic Applications", Journal of Nano Research, Vol. 39, pp. 57-68, 2016

Online since:

February 2016




* - Corresponding Author

[1] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Fine Structure Constant Defines Visual Transparency of Graphene, Science, vol. 320, no. 5881, p.1308–1308, Jun. (2008).

DOI: 10.1126/science.1156965

[2] M. C. Lemme, Current Status of Graphene Transistors, Solid State Phenomena, vol. 156–158, p.499–509, Oct. (2009).

DOI: 10.4028/

[3] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Communications, vol. 146, no. 9–10, p.351–355, Jun. (2008).

DOI: 10.1016/j.ssc.2008.02.024

[4] Edward D. Palik, Handbook of Optical Constants of Solids, vol. 3. New York: Academic Press, (1998).

[5] K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, Optical spectroscopy of graphene: From the far infrared to the ultraviolet, Solid State Communications, vol. 152, no. 15, p.1341–1349, Aug. (2012).

DOI: 10.1016/j.ssc.2012.04.064

[6] J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, Measurement of ultrafast carrier dynamics in epitaxial graphene, Applied Physics Letters, vol. 92, no. 4, p.042116, Jan. (2008).

DOI: 10.1063/1.2837539

[7] D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, 50 GBit/s Photodetectors Based on Wafer-Scale Graphene for Integrated Silicon Photonic Communication Systems, ACS Photonics, Aug. (2014).

DOI: 10.1021/ph5001605

[8] F. Schwierz, Graphene transistors, Nat Nano, vol. 5, no. 7, p.487–496, Jul. (2010).

[9] J. S. Moon, D. Curtis, M. Hu, D. Wong, C. McGuire, P. M. Campbell, G. Jernigan, J. L. Tedesco, B. VanMil, R. Myers-Ward, C. Eddy, and D. K. Gaskill, Epitaxial-Graphene RF Field-Effect Transistors on Si-Face 6H-SiC Substrates, IEEE Electron Device Letters, vol. 30, no. 6, p.650–652, Jun. (2009).

DOI: 10.1109/led.2009.2020699

[10] Y. -B. Kim, Challenges for Nanoscale MOSFETs and Emerging Nanoelectronics, Transactions on Electrical and Electronic Materials, vol. 11, no. 3, p.93–105, Jun. (2010).

DOI: 10.4313/teem.2010.11.3.093

[11] E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. L. dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. C. Neto, Biased Bilayer Graphene: Semiconductor with a Gap Tunable by the Electric Field Effect, Phys. Rev. Lett., vol. 99, no. 21, p.216802, Nov. (2007).

DOI: 10.1103/physrevlett.99.216802

[12] Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X. Shen, Uniaxial Strain on Graphene: Raman Spectroscopy Study and Band-Gap Opening, ACS Nano, vol. 2, no. 11, p.2301–2305, Nov. (2008).

DOI: 10.1021/nn800459e

[13] J. Moser, A. Barreiro, and A. Bachtold, Current-induced cleaning of graphene, Applied Physics Letters, vol. 91, no. 16, p.163513, Oct. (2007).

DOI: 10.1063/1.2789673

[14] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett., vol. 8, no. 3, p.902–907, Mar. (2008).

DOI: 10.1021/nl0731872

[15] S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits, Applied Physics Letters, vol. 92, no. 15, p.151911, Apr. (2008).

DOI: 10.1063/1.2907977

[16] P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, Graphene-Based Liquid Crystal Device, Nano Lett., vol. 8, no. 6, p.1704–1708, Jun. (2008).

DOI: 10.1021/nl080649i

[17] C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, vol. 321, no. 5887, p.385–388, Jul. (2008).

DOI: 10.1126/science.1157996

[18] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science, vol. 306, no. 5696, p.666–669, Oct. (2004).

DOI: 10.1126/science.1102896

[19] C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Ultrathin Epitaxial Graphite:  2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics, J. Phys. Chem. B, vol. 108, no. 52, p.19912–19916, Dec. (2004).

DOI: 10.1021/jp040650f

[20] S. Kataria, S. Wagner, J. Ruhkopf, A. Gahoi, H. Pandey, R. Bornemann, S. Vaziri, A. D. Smith, M. Ostling, and M. C. Lemme, Chemical vapor deposited graphene: From synthesis to applications, Phys. Status Solidi A, vol. 211, no. 11, p.2439–2449, Nov. (2014).

DOI: 10.1002/pssa.201400049

[21] A. K. Geim and K. S. Novoselov, The rise of graphene, Nat Mater, vol. 6, no. 3, p.183–191, Mar. (2007).

[22] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Electronic Confinement and Coherence in Patterned Epitaxial Graphene, Science, vol. 312, no. 5777, p.1191–1196, May (2006).

DOI: 10.1126/science.1125925

[23] Z. H. Ni, W. Chen, X. F. Fan, J. L. Kuo, T. Yu, A. T. S. Wee, and Z. X. Shen, Raman spectroscopy of epitaxial graphene on a SiC substrate, Phys. Rev. B, vol. 77, no. 11, p.115416, Mar. (2008).

[24] W. A. de Heer, C. Berger, M. Ruan, M. Sprinkle, X. Li, Y. Hu, B. Zhang, J. Hankinson, and E. Conrad, Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide, Proc Natl Acad Sci U S A, vol. 108, no. 41, p.16900–16905, Oct. (2011).

DOI: 10.1073/pnas.1105113108

[25] R. Ming, Y. Hu, Z. Guo, R. Dong, J. Palmer, J. Hankinson, C. Berger, and W. A. De Heer, Epitaxial graphene on silicon carbide: Introduction to structured graphene, Materials Research Bulletin, vol. 37, p.1138, (2012).

DOI: 10.1557/mrs.2012.231

[26] K. L. Choy, Chemical vapour deposition of coatings, Progress in Materials Science, vol. 48, no. 2, p.57–170, (2003).

[27] Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, and J. M. Tour, Growth of graphene from solid carbon sources, Nature, vol. 468, no. 7323, p.549–552, Nov. (2010).

DOI: 10.1038/nature09579

[28] C. Mattevi, H. Kim, and M. Chhowalla, A review of chemical vapour deposition of graphene on copper, J. Mater. Chem., vol. 21, no. 10, p.3324–3334, Feb. (2011).

DOI: 10.1039/c0jm02126a

[29] Z. Sun, A. -R. O. Raji, Y. Zhu, C. Xiang, Z. Yan, C. Kittrell, E. L. G. Samuel, and J. M. Tour, Large-Area Bernal-Stacked Bi-, Tri-, and Tetralayer Graphene, ACS Nano, vol. 6, no. 11, p.9790–9796, Nov. (2012).

DOI: 10.1021/nn303328e

[30] L. Gan and Z. Luo, Turning off Hydrogen To Realize Seeded Growth of Subcentimeter Single-Crystal Graphene Grains on Copper, ACS Nano, vol. 7, no. 10, p.9480–9488, Oct. (2013).

DOI: 10.1021/nn404393b

[31] T. Ma, W. Ren, Z. Liu, L. Huang, L. -P. Ma, X. Ma, Z. Zhang, L. -M. Peng, and H. -M. Cheng, Repeated Growth–Etching–Regrowth for Large-Area Defect-Free Single-Crystal Graphene by Chemical Vapor Deposition, ACS Nano, vol. 8, no. 12, p.12806–12813, Dec. (2014).

DOI: 10.1021/nn506041t

[32] J. -H. Lee, E. K. Lee, W. -J. Joo, Y. Jang, B. -S. Kim, J. Y. Lim, S. -H. Choi, S. J. Ahn, J. R. Ahn, M. -H. Park, C. -W. Yang, B. L. Choi, S. -W. Hwang, and D. Whang, Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium, Science, vol. 344, no. 6181, p.286–289, Apr. (2014).

DOI: 10.1126/science.1252268

[33] G. Lippert, J. Dąbrowski, T. Schroeder, M. A. Schubert, Y. Yamamoto, F. Herziger, J. Maultzsch, J. Baringhaus, C. Tegenkamp, M. C. Asensio, J. Avila, and G. Lupina, Graphene grown on Ge(0 0 1) from atomic source, Carbon, vol. 75, p.104–112, Aug. (2014).

DOI: 10.1016/j.carbon.2014.03.042

[34] Y. Wang, Y. Zheng, X. Xu, E. Dubuisson, Q. Bao, J. Lu, and K. P. Loh, Electrochemical Delamination of CVD-Grown Graphene Film: Toward the Recyclable Use of Copper Catalyst, ACS Nano, vol. 5, no. 12, p.9927–9933, Dec. (2011).

DOI: 10.1021/nn203700w

[35] S. Riazimehr, D. Schneider, C. Yim, S. Kataria, V. Passi, A. Bablich, G. Duesberg, and M. Lemme, Spectral sensitivity of a graphene/silicon pn-junction photodetector, in EUROSOI-ULIS 2015, Bologna, Italy, (2015).

DOI: 10.1109/ulis.2015.7063777

[36] A. Gahoi, V. Passi, S. Kataria, S. Wagner, and Max Lemme, Systematic study of the palladium-graphene contact, in EUROSOI-ULIS 2015, Bologna, Italy, (2015).

DOI: 10.1109/ulis.2015.7063835

[37] O. Kazakova, T. L. Burnett, J. Patten, L. Yang, and R. Yakimova, Epitaxial graphene on SiC(0001): functional electrical microscopy studies and effect of atmosphere, Nanotechnology, vol. 24, no. 21, p.215702, May (2013).

DOI: 10.1088/0957-4484/24/21/215702

[38] Sarah Riazimehr, Andreas Bablich, Daniel Schneider, Satender Kataria, Vikram Passi, Chanyoung Yim, Georg S Duesberg, and Max C Lemme, Spectral sensitivity of graphene/silicon heterojunction photodetectors, Solid State Electronics Special Edition.

DOI: 10.1016/j.sse.2015.08.023

[39] W. S. Leong, C. T. Nai, and J. T. Thong, What Does Annealing Do to Metal–Graphene Contacts?, Nano letters, vol. 14, no. 7, p.3840–3847, (2014).

DOI: 10.1021/nl500999r

Fetching data from Crossref.
This may take some time to load.