Oxidation Reduction in Nanocrystalline Silicon Grown by Hydrogen-Profiling Technique


Article Preview

The deposition of a compact amorphous silicon/nano-crystalline silicon material is demonstrated by hot-wire chemical vapour deposition using a sequential hydrogen profiling technique at low hydrogen dilutions. Nano-crystallite nucleation occurs at the substrate interface that develops into a uniform, porous crystalline structure as the growth progresses. A further reduction in the H-dilution results in the onset of a dense amorphous silicon layer. The average crystalline volume fraction and nano-crystallite size in the sample bulk amounts to 30% and 6 nm, respectively, as probed by Raman spectroscopy using the 647 nm excitation. The change in hydrogen dilution is accompanied by a graded hydrogen concentration depth-profile, where the hydrogen concentration decreases as the growth progresses. The level of post-deposition oxidation is considerably reduced, as inferred from infrared spectroscopy. The presence of oxygen is mainly confined to the substrate interface as a result of thermal oxidation during thin film growth.






C. J. Arendse et al., "Oxidation Reduction in Nanocrystalline Silicon Grown by Hydrogen-Profiling Technique", Journal of Nano Research, Vol. 41, pp. 9-17, 2016

Online since:

May 2016




* - Corresponding Author

[1] V. Shah, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, U. Graf, Material and solar cell research in microcrystalline silicon, Sol. Energy Mater. Sol. Cells 78 (2003) 469-491.

DOI: https://doi.org/10.1016/s0927-0248(02)00448-8

[2] H. Takagi, H. Ogawa, Y. Yamazabi, A. Ishizaki, T. Nakakiri, Quantum size effects on photoluminescence in ultrafine Si particles, Appl. Phys. Lett. 56 (1990) 2379-2380.

DOI: https://doi.org/10.1063/1.102921

[3] J. Kitao, H. Harada, N. Yoshida, Y. Kasuya, M. Nishio, T. Sakamoto, T. Itoh, S. Nonomura, Absorption coefficient spectra of μc-Si in the low-energy region 0. 4 – 1. 2 eV, Sol. Energy Mater. Sol. Cells 66 (2001) 245-251.

DOI: https://doi.org/10.1016/s0927-0248(00)00180-x

[4] R. Saleh, N.H. Nickel, Raman spectroscopy of B-doped microcrystalline silicon films, Thin Solid Films 427 (2003) 266-269.

DOI: https://doi.org/10.1016/s0040-6090(02)01203-8

[5] Y. Mai, S. Klein, X. Geng, F. Finger, Structure adjustment during high-deposition-rate growth of microcrystalline silicon solar cells, Appl. Phys. Lett. 85 (2004) 2839-2841.

DOI: https://doi.org/10.1063/1.1801676

[6] J. Yang, B. Yan, S. Guha, Amorphous and nanocrystalline silicon-based multi-junction solar cells, Thin Solid Films 487 (2005) 162-169.

DOI: https://doi.org/10.1016/j.tsf.2005.01.058

[7] R.E.I. Schropp, H. Li, R.H. Franken, J.K. Rath, C.H.M. van der Werf, J.W.A. Schüttauf, R.L. Stolk, Nanostructured thin films for multiband-gap silicon triple junction solar cells, Thin Solid Films 516 (2008) 6818-6823.

DOI: https://doi.org/10.1016/j.tsf.2007.12.089

[8] J.H. He, H.Y. Kong, R.R. Yang, H. Dou, N. Faraz, L. Wang, C. Feng, Review on fiber morphology obtained by bubble electrospinning and blown bubble spinning, Thermal Science 16(5) (2012) 1263-1279.

DOI: https://doi.org/10.2298/tsci1205263h

[9] B.J. Yan, G.Z. Yue, J. Yang, S. Guha, D.L. Williamson, D.X. Han, C.S. Jiang, Microstructure Evolution with Thickness and Hydrogen Dilution Profile in Microcrystalline Silicon Solar Cells, Mater. Res. Soc. Symp. Proc. 808 (2004) A8. 5.

DOI: https://doi.org/10.1557/proc-808-a8.5

[10] T. Kilper, W. Beyer, G. Bräuer, T. Bronger, R. Carius, M.N. van den Donker, D. Hrunski, A. Lambertz, T. Merdzhanova, A. Mück, B. Rech, W. Reetz, R. Schmitz, U. Zastrow, A. Gordijn, Oxygen and nitrogen impurities in microcrystalline silicon deposited under optimized conditions: influence on material properties and solar cell performance, J. Appl. Phys. 105 (2009).

DOI: https://doi.org/10.1063/1.3104781

[11] B. Yan, G. Yue, J. Yang, S. Suha, D. L. Williamson, D. Han, C.S. Jiang, Hydrogen dilution profiling for hydrogenated microcrystalline silicon solar cells, Appl. Phys. Lett. 85 (11) (2004) 1955-(1957).

DOI: https://doi.org/10.1063/1.1788877

[12] J. Gu, M. Zhu, L. Wang, F. Liu, B. Zhou, Y. Zhou, K. Ding, G. Li, The compact microcrystalline Si thin film with structure uniformity in the growth direction by hydrogen dilution profile, J. App. Phys. 98 (2005) 093505.

DOI: https://doi.org/10.1063/1.2126122

[13] ] J. Gu, M. Zhu, L. Wang, F. Liu, B. Zhou, K. Ding, G. Li, High quality microcrystalline Si films by hydrogen dilution profile. Thin Solid Films 515 (2006) 452-455.

DOI: https://doi.org/10.1016/j.tsf.2005.12.255

[14] C.J. Arendse, D. Knoesen, D.T. Britton, Thermal stability of hot-wire deposited amorphous silicon, Thin Solid Films 501 (2006) 92-94.

DOI: https://doi.org/10.1016/j.tsf.2005.07.131

[15] C. Droz, E. Vallat-Sauvain, J. Bailat, L. Feitknecht, J. Meier, A. Shah, Relationship between Raman crystallinity and open-circuit voltage in microcrystalline silicon solar cells, Sol. Energy Mater. Sol. Cells 81 (2004) 61-71.

DOI: https://doi.org/10.1016/j.solmat.2003.07.004

[16] Y. He, C. Yin, G. Cheng, L. Wang, X. Liu, G.Y. Hu, The structure and properties of nanosize crystalline silicon films, J. Appl. Phys. 75 (1994) 797-803.

[17] D. Beeman, R. Tsu, M.F. Thorpe, Structural information from the Raman spectrum of amorphous silicon, Phys. Rev. B 32 (1985) 874-878.

DOI: https://doi.org/10.1103/physrevb.32.874

[18] M. Birkholz, B. Selle, E. Conrad, K. Lips, W. Fuhs, Evolution of structure in thin microcrystalline silicon films grown by electron-cyclotron resonance chemical vapor deposition, J. Appl. Phys. 88 (2000) 4376-4379.

DOI: https://doi.org/10.1063/1.1289783

[19] J.H. Zhou, K. Ikuta, T. Yasuda, T. Umeda, S. Yamasaki, K. Tanaka, Control of crystallinity of microcrystalline silicon film grown on insulating glass substrates, J. Non-Cryst. Solids 227 – 230 (1998) 857-860.

DOI: https://doi.org/10.1016/s0022-3093(98)00199-9

[20] H.L. Duan, G.A. Zaharias, S.F. Bent, The effect of filament temperature on the gaseous radicals in the hot wire decomposition of silane, Thin Solid Films 395 (2001) 36-41.

DOI: https://doi.org/10.1016/s0040-6090(01)01203-2

[21] C.J. Oliphant, C.J. Arendse, S.N. Prins, G.F. Malgas, D. Knoesen, Structural evolution of a Ta-filament during hot-wire chemical vapour deposition of Silicon investigated by electron backscatter diffraction, J. Mater. Sci. 47 (2012) 2405-2410.

DOI: https://doi.org/10.1007/s10853-011-6061-z

[22] I. Ferrera, M.E.V. Costa, E. Fortunato, R. Martins, From porous to compact films by changing the onset conditions of HW-CVD process, Thin Solid Films 427 (2003) 225-230.

DOI: https://doi.org/10.1016/s0040-6090(02)01186-0

[23] M.H. Brodsky, M. Cardona, J.J. Cuomo, Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering, Phys. Rev. B 16 (1977) 3556-3571.

DOI: https://doi.org/10.1103/physrevb.16.3556

[24] A.A. Langford, M.L. Fleet, B.P. Nelson, W.A. Lanford, N. Maley, Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon, Phys. Rev. B 45 (1992) 13367-13377.

DOI: https://doi.org/10.1103/physrevb.45.13367