[1]
M.I. Prodromidis, Impedimetric immunosensors-A review, Electrochim. Acta, 55 (2010) 4227-4233.
DOI: https://doi.org/10.1016/j.electacta.2009.01.081
[2]
C. Moina, G. Ybarra, Fundamentals and applications of immunosensors, in: N.H.L. Chiu, T.K. Christopoulos (Eds. ), Advances in Immunoassay Technology, InTech., Janeza Trdine 9, 51000 Rijeka, Croatia, 2012, pp.65-80.
[3]
R.P. Baldwin, K.N. Thomsen, Chemically modified electrodes in liquid chromatography detection: A review, Talanta, 38 (1991) 1-16.
DOI: https://doi.org/10.1016/0039-9140(91)80004-j
[4]
K. Brown, S. Gray, Cyclic voltammetric studies of electropolymerized films based on ruthenium (II/III) bis (1, 10 phenanthroline) (4-methyl-4'vinyl-2, 2'-bipyridine), Int. J. Chem., 2 (2010) 3-9.
DOI: https://doi.org/10.5539/ijc.v2n2p3
[5]
K.L. Brown, H. A Mottola, Voltammetric, chronocoulometric, and spectroelectrochemical studies of electropolymerized Films based on Cu (II/I) - 4, 9, 16, 23-Tetraaminophthalocyanine, Langmuir, 7463 (1998) 3411-3417.
DOI: https://doi.org/10.1021/la970691l
[6]
Y.C. Luo, J.S. Do, Urea biosensor based on PANi(urease)-Nafion/Au composite electrode, Biosens. Bioelectron., 20, (2004) 15-23.
DOI: https://doi.org/10.1016/j.bios.2003.11.028
[7]
X.H. Wang, Y.H. Geng, L.X. Wang, X.B. Jing, F.S. Wang, Thermal behaviors of doped polyaniline, Synth. Met., 69 (1995) 265-266.
[8]
J.C. Chiang, A.G. MacDiarmid, Polyaniline: Protonic acid doping of the emeraldine form to the metallic regime, Synth. Met., 13 (1986) 193-205.
DOI: https://doi.org/10.1016/0379-6779(86)90070-6
[9]
S. Pruneanu, E. Veress, I. Marian, L. Oniciu, Characterization of polyaniline by cyclic voltammetry and UV-Vis absorption spectroscopy, J. Mater. Sci., 34 (1999) 2733-2739.
DOI: https://doi.org/10.1023/a:1004641908718
[10]
Y. Kang, S.K. Kim, C. Lee, Doping of polyaniline by thermal acid-base exchange reaction, Mater. Sci. Eng. C, 24 (2004) 39-41.
[11]
C. Dhand, M. Das, M. Datta, B.D. Malhotra, Recent advances in polyaniline based biosensors., Biosens. Bioelectron., 26 (2011) 2811-21.
DOI: https://doi.org/10.1016/j.bios.2010.10.017
[12]
K. Grennan, G. Strachan, A.J. Porter, A.J. Killard, M.R. Smyth, Atrazine analysis using an amperometric immunosensor based on single-chain antibody fragments and regeneration-free multi-calibrant measurement, Anal. Chim. Acta, 500 (2003) 287-298.
DOI: https://doi.org/10.1016/s0003-2670(03)00942-5
[13]
S.J. Kwon, M. Seo, H. Yang, S.Y. Kim, J. Kwak, Application of polyaniline to an enzyme-amplified electrochemical immunosensor as an electroactive report molecule, Bull. Korean Chem. Soc., 31 (2010) 3103-3108.
DOI: https://doi.org/10.5012/bkcs.2010.31.11.3103
[14]
J.E. Park, S.G. Park, A. Koukitu, O. Hatozaki, N. Oyama, Electrochemical and chemical interactions between polyaniline and palladium nanoparticles, Synth. Met., 141 (2004) 265-269.
DOI: https://doi.org/10.1016/s0379-6779(03)00410-7
[15]
T.K. Sarma, D. Chowdhury, A. Paul, A. Chattopadhyay, Synthesis of Au nanoparticle-conductive polyaniline composite using H2O2 as oxidising as well as reducing agent, Chem. Commun. (Camb)., 111 (2002) 1048-1049.
DOI: https://doi.org/10.1039/b201014c
[16]
F. Okumu , M. Matoetoe, Kinetics and morphological analysis of Silver-Platinum bimatallic nanoparticles, Acta Metall. Sin. (Engl. Lett. ) DOI 10. 1007/s40195-016-0395-0.
DOI: https://doi.org/10.1007/s40195-016-0395-0
[17]
I.Y. Sapurina, M.A. Shishov, Oxidative polymerization of aniline : Molecular synthesis of polyaniline and the formation of supramolecular structures, in: A.D. Gomes (Eds. ), New Polymers for Special Applications, InTech, 2012, pp.251-312.
DOI: https://doi.org/10.5772/48758
[18]
A.M. Pharhad Hussain, A. Kumar, Electrochemical synthesis and characterization of chloride doped polyaniline, 26 (2003) 329-334.
DOI: https://doi.org/10.1007/bf02707455
[19]
R. Cătrănescu, I. Bobîrnac, M. Crişan, A. Cojocaru, I. Maior, Studies regarding electrochemical polymerization of aniline in ionic liquid and polymer properties, UPB Sci. Bull. Ser. B Chem. Mater. Sci., 74 (2012) 1454-2331.
[20]
G. Zotti, S. Cattarin, N. Comisso, Cyclic potential sweep electropolymerization of aniline: The role of anions in the polymerization mechanism, J. Electroanal. Chem., 239 (1988) 387-396.
DOI: https://doi.org/10.1016/0022-0728(88)80293-6
[21]
E.M. Geniès, M. Lapkowski, J.F. Penneau, Cyclic voltammetry of polyaniline: interpretation of the middle peak, J. Electroanal. Chem. Interfacial Electrochem., 249 (1988) 97-107.
DOI: https://doi.org/10.1016/0022-0728(88)80351-6
[22]
J.M. Calvert, R.H. Schmehl, B.P. Sullivan, J.S. Facci, T.J. Meyer, R.W. Murray, Synthetic and mechanistic investigations of the reductive electrochemical polymerization of vinyl-containing complexes of iron(II), ruthenium(II), and osmium(II), Inorg. Chem., 22 (1983).
DOI: https://doi.org/10.1021/ic00157a013
[23]
R. Gangopadhyay, A. De, Conducting polymer nanocomposites: A brief overview, Chem. Mater., 12 (2000) 608-622.
DOI: https://doi.org/10.1021/cm990537f
[24]
A. Choudhury, Polyaniline/silver nanocomposites: Dielectric properties and ethanol vapour sensitivity, Sensors Actuators B Chem., 138 (2009) 318-325.
DOI: https://doi.org/10.1016/j.snb.2009.01.019
[25]
D. Orata D.A. Buttry, Determination of ion populations and solvent content as functions of redox state and pH in polyaniline, J. Am. Chem. Soc., 109 (1987) 3574-3581.
DOI: https://doi.org/10.1021/ja00246a013
[26]
P. Van Dong, C. Ha, L. Binh, J. Kasbohm, Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles, Int. Nano Lett., 2 (2012) 1-9.
DOI: https://doi.org/10.1186/2228-5326-2-9
[27]
Y. Furukawa, F. Ueda, Y. Hyodo, I. Harada, Vibrational spectra and structure of polyaniline, Macromolecules, 21 (1988) 1297-1305.
DOI: https://doi.org/10.1021/ma00183a020
[28]
Y. Cao, S. Li, Z. Xue, D. Guo, Spectroscopic and electrical characterization of some aniline oligomers and polyaniline, Synth. Met., 16 (1986) 305-315.
DOI: https://doi.org/10.1016/0379-6779(86)90167-0
[29]
P. Vijayanand, J. Vivekanandan, V. Ponnusamy, A. Mahudeswaran, Synthesis , characterization and conductivity study of polyaniline prepared by chemical oxidative and electrochemical methods, Arch. Appl. Sci. Res., 3 (2011) 147-153.
[30]
S.Y. Park, M.S. Cho, H.J. Choi, Synthesis and electrical characteristics of polyaniline nanoparticles and their polymeric composite, Curr. Appl. Phys., 4 (2004) 581-583.
[31]
G. Neelgund, E. Hrehorova, M. Joyce, V. Bliznyuk, Synthesis and characterization of polyaniline derivative and silver nanoparticle composites, Polym. Int., 57 (2008) 1083-1089.
DOI: https://doi.org/10.1002/pi.2445
[32]
H.K. Hassan, N.F. Atta, A. Galal, Electropolymerization of aniline over chemically converted graphene-systematic study and effect of dopant, Int. J. Electrochem. Sci., 7 (2012) 11161-11181.
[33]
K.M. Molapo, P.M. Ndangili, R.F. Ajayi, G. Mbambisa, S.M. Mailu, N. Njomo, M. Masikini, P. Baker, E.I. Iwuoha, Electronics of conjugated polymers (I): Polyaniline, Int. J. Electrochem. Sci., 7 (2012) 11859-11875.
[34]
N.P.S. Chauhan, R. Ameta, R. Ameta, S.C. Ameta, Thermal and conducting behaviour of emeraldine base (EB) form of polyaniline (PANI), Indian J. Chem. Technol., 18 (2011) 118-122.
[35]
S. Admassie, O. Inganäs, W. Mammo, E. Perzon, M.R. Andersson, Electrochemical and optical studies of the band gaps of alternating polyfluorene copolymers, Synth. Met., 156 (2006) 614-623.
DOI: https://doi.org/10.1016/j.synthmet.2006.02.013
[36]
P. Daubinger, J. Kieninger, T. Unmüssig, G.A. Urban, Electrochemical characteristics of nanostructured platinum electrodes - a cyclic voltammetry study., Phys. Chem. Chem. Phys., 16 (2014) 8392-8399.
DOI: https://doi.org/10.1039/c4cp00342j
[37]
A. Motheo, J. Santos, E. Venancio, L.H. Mattoso, Influence of different types of acidic dopant on the electrodeposition and properties of polyaniline films, Polymer, 39 (1998) 6977-6982.
DOI: https://doi.org/10.1016/s0032-3861(98)00086-x
[38]
H. Larsson, M. Sharp, Charge propagation in [Os(bpy)2(PVP)xCl]Cl polymers. An example of mean field behavior in a system with constrained diffusion of redox sites, J. Electroanal. Chem., 381 (1995) 133-142.
DOI: https://doi.org/10.1016/0022-0728(94)03654-l
[39]
H.D. Abruna, Coordination chemistry in two dimensions: Chemically modified electrodes, Coord. Chem. Rev., 86 (1988) 135-189.
DOI: https://doi.org/10.1016/0010-8545(88)85013-6
[40]
A.W. Bott, Electrochemical techniques for the characterization of redox polymers, Curr. Sep., 19 (2001) 71-75.
[41]
A.J. Bard, L.R. Faulkner, Electrochemical methods: Fundamentals and applications (2nd ed); John & Sons, Inc.: New York (2001).
[42]
R. Valaski, S. Ayoub, L. Micaroni, I.A. Hummelgen, Influence of film thickness on charge transport of electrodeposited polypyrrole thin films, Thin Solid Films, 415 (2002) 206-210.
DOI: https://doi.org/10.1016/s0040-6090(02)00553-9
[43]
Monk, P. M, Fundamentals of electroanalytical chemistry. Chichester, New York: John Wiley & Sons Ltd (2001).
[44]
D. Bejan, A. Duca, Voltammetry of aniline with different electrodes and electrolytes, Croat. Chem. Acta, 71 (1998) 745-756.
[45]
F.N. Crespilho, R.M. Iost, S.A. Travain, O.N. Oliveira Jr., V. Zucolotto, Enzyme immobilization on Ag nanoparticles/polyaniline nanocomposites., Biosens. Bioelectron., 24 (2009) 3073-3077.
DOI: https://doi.org/10.1016/j.bios.2009.03.026
[46]
Y.B. Wankhede, S.B. Kondawar, S.R. Thakare, P.S. More, Synthesis and characterization of silver nanoparticles embedded in polyaniline nanocomposite, DOI 10. 5185/amlett. 2012. icnano. 108 Synth., (2012) 1-11.
DOI: https://doi.org/10.5185/amlett.2013.icnano.108
[47]
S.M. Reda, S.M. Al-ghannam, Synthesis and electrical properties of polyaniline composite with silver nanoparticles, Adv. Mater. Phys. Chem., 2 (2012) 75-81.
[49]
S. Dhibar, C.K. Das, Silver nanoparticles decorated polyaniline/multiwalled carbon nanotubes nanocomposite for high-performance supercapacitor electrode, Ind. Eng. Chem. Res., 53(2014) 3495-3508.
DOI: https://doi.org/10.1021/ie402161e