Potential of Silver Nanoparticles Functionalized Polyaniline as an Electrochemical Transducer


Article Preview

Modification of commercial platinum (Pt) and glassy carbon (GC) electrodes with polyaniline (PANI) and silver nanoparticles doped polyaniline (PANI/Ag NPs) through electropolymerization of aniline in the absence and presence of Ag NPs in 1 M hydrochloric acid (HCl) was interrogated. Fourier transform infrared (FTIR) and transmission electron microscope (TEM) techniques were used for structural, compositional and morphological elucidation. FTIR spectra for PANI and PANI/Ag NPs had the characteristic PANI functional groups as well as desired bands for the conducting emeraldine (EM) form. The predominance of the PANI pattern in the spectra is indicative of the intact PANI structure in the presence of Ag NPs while the slight band shifts are signify interfacial interactions between PANI and Ag NPs. TEM micrograms depicts different size one dimensional nanofibric tubes of the supramolecular structures of PANI. Ag NPs functionalized PANI had larger smoother tubes, suggesting organized morphology arrangement. An increased energy dispersive spectroscopy (EDS)-TEM count from 256 to 277 confirms incorporation of Ag NPs in PANI. GC/PANI/Ag NPs exhibited outstanding electroactivity (higher conductivity and rate of electron transfer).This might be a result of the large surface coverage, film thickness and diffusion coefficient as a result of the large GC surface area. Possibly, the improvement might be due to the GC electrode properties. The electroactivity of the electrodes increased in the order: Pt < GC < Pt/PANI < Pt/PANI/Ag NPs < GC/PANI < GC/PANI/Ag NPs. The effect of Ag NPs in the polymer was demonstrated by ultimate band gap reduction of PANI and enhanced magnitudes of current response per electrode.



Edited by:

Emmanuel Iheanyichukwu Iwuoha and Priscilla Gloria Lorraine Baker




M. Khesuoe et al., "Potential of Silver Nanoparticles Functionalized Polyaniline as an Electrochemical Transducer", Journal of Nano Research, Vol. 44, pp. 21-34, 2016

Online since:

November 2016




* - Corresponding Author

[1] M.I. Prodromidis, Impedimetric immunosensors-A review, Electrochim. Acta, 55 (2010) 4227-4233.

DOI: https://doi.org/10.1016/j.electacta.2009.01.081

[2] C. Moina, G. Ybarra, Fundamentals and applications of immunosensors, in: N.H.L. Chiu, T.K. Christopoulos (Eds. ), Advances in Immunoassay Technology, InTech., Janeza Trdine 9, 51000 Rijeka, Croatia, 2012, pp.65-80.

[3] R.P. Baldwin, K.N. Thomsen, Chemically modified electrodes in liquid chromatography detection: A review, Talanta, 38 (1991) 1-16.

DOI: https://doi.org/10.1016/0039-9140(91)80004-j

[4] K. Brown, S. Gray, Cyclic voltammetric studies of electropolymerized films based on ruthenium (II/III) bis (1, 10 phenanthroline) (4-methyl-4'vinyl-2, 2'-bipyridine), Int. J. Chem., 2 (2010) 3-9.

DOI: https://doi.org/10.5539/ijc.v2n2p3

[5] K.L. Brown, H. A Mottola, Voltammetric, chronocoulometric, and spectroelectrochemical studies of electropolymerized Films based on Cu (II/I) - 4, 9, 16, 23-Tetraaminophthalocyanine, Langmuir, 7463 (1998) 3411-3417.

DOI: https://doi.org/10.1021/la970691l

[6] Y.C. Luo, J.S. Do, Urea biosensor based on PANi(urease)-Nafion/Au composite electrode, Biosens. Bioelectron., 20, (2004) 15-23.

DOI: https://doi.org/10.1016/j.bios.2003.11.028

[7] X.H. Wang, Y.H. Geng, L.X. Wang, X.B. Jing, F.S. Wang, Thermal behaviors of doped polyaniline, Synth. Met., 69 (1995) 265-266.

[8] J.C. Chiang, A.G. MacDiarmid, Polyaniline: Protonic acid doping of the emeraldine form to the metallic regime, Synth. Met., 13 (1986) 193-205.

DOI: https://doi.org/10.1016/0379-6779(86)90070-6

[9] S. Pruneanu, E. Veress, I. Marian, L. Oniciu, Characterization of polyaniline by cyclic voltammetry and UV-Vis absorption spectroscopy, J. Mater. Sci., 34 (1999) 2733-2739.

DOI: https://doi.org/10.1023/a:1004641908718

[10] Y. Kang, S.K. Kim, C. Lee, Doping of polyaniline by thermal acid-base exchange reaction, Mater. Sci. Eng. C, 24 (2004) 39-41.

[11] C. Dhand, M. Das, M. Datta, B.D. Malhotra, Recent advances in polyaniline based biosensors., Biosens. Bioelectron., 26 (2011) 2811-21.

DOI: https://doi.org/10.1016/j.bios.2010.10.017

[12] K. Grennan, G. Strachan, A.J. Porter, A.J. Killard, M.R. Smyth, Atrazine analysis using an amperometric immunosensor based on single-chain antibody fragments and regeneration-free multi-calibrant measurement, Anal. Chim. Acta, 500 (2003) 287-298.

DOI: https://doi.org/10.1016/s0003-2670(03)00942-5

[13] S.J. Kwon, M. Seo, H. Yang, S.Y. Kim, J. Kwak, Application of polyaniline to an enzyme-amplified electrochemical immunosensor as an electroactive report molecule, Bull. Korean Chem. Soc., 31 (2010) 3103-3108.

DOI: https://doi.org/10.5012/bkcs.2010.31.11.3103

[14] J.E. Park, S.G. Park, A. Koukitu, O. Hatozaki, N. Oyama, Electrochemical and chemical interactions between polyaniline and palladium nanoparticles, Synth. Met., 141 (2004) 265-269.

DOI: https://doi.org/10.1016/s0379-6779(03)00410-7

[15] T.K. Sarma, D. Chowdhury, A. Paul, A. Chattopadhyay, Synthesis of Au nanoparticle-conductive polyaniline composite using H2O2 as oxidising as well as reducing agent, Chem. Commun. (Camb)., 111 (2002) 1048-1049.

DOI: https://doi.org/10.1039/b201014c

[16] F. Okumu , M. Matoetoe, Kinetics and morphological analysis of Silver-Platinum bimatallic nanoparticles, Acta Metall. Sin. (Engl. Lett. ) DOI 10. 1007/s40195-016-0395-0.

DOI: https://doi.org/10.1007/s40195-016-0395-0

[17] I.Y. Sapurina, M.A. Shishov, Oxidative polymerization of aniline : Molecular synthesis of polyaniline and the formation of supramolecular structures, in: A.D. Gomes (Eds. ), New Polymers for Special Applications, InTech, 2012, pp.251-312.

DOI: https://doi.org/10.5772/48758

[18] A.M. Pharhad Hussain, A. Kumar, Electrochemical synthesis and characterization of chloride doped polyaniline, 26 (2003) 329-334.

DOI: https://doi.org/10.1007/bf02707455

[19] R. Cătrănescu, I. Bobîrnac, M. Crişan, A. Cojocaru, I. Maior, Studies regarding electrochemical polymerization of aniline in ionic liquid and polymer properties, UPB Sci. Bull. Ser. B Chem. Mater. Sci., 74 (2012) 1454-2331.

[20] G. Zotti, S. Cattarin, N. Comisso, Cyclic potential sweep electropolymerization of aniline: The role of anions in the polymerization mechanism, J. Electroanal. Chem., 239 (1988) 387-396.

DOI: https://doi.org/10.1016/0022-0728(88)80293-6

[21] E.M. Geniès, M. Lapkowski, J.F. Penneau, Cyclic voltammetry of polyaniline: interpretation of the middle peak, J. Electroanal. Chem. Interfacial Electrochem., 249 (1988) 97-107.

DOI: https://doi.org/10.1016/0022-0728(88)80351-6

[22] J.M. Calvert, R.H. Schmehl, B.P. Sullivan, J.S. Facci, T.J. Meyer, R.W. Murray, Synthetic and mechanistic investigations of the reductive electrochemical polymerization of vinyl-containing complexes of iron(II), ruthenium(II), and osmium(II), Inorg. Chem., 22 (1983).

DOI: https://doi.org/10.1021/ic00157a013

[23] R. Gangopadhyay, A. De, Conducting polymer nanocomposites: A brief overview, Chem. Mater., 12 (2000) 608-622.

DOI: https://doi.org/10.1021/cm990537f

[24] A. Choudhury, Polyaniline/silver nanocomposites: Dielectric properties and ethanol vapour sensitivity, Sensors Actuators B Chem., 138 (2009) 318-325.

DOI: https://doi.org/10.1016/j.snb.2009.01.019

[25] D. Orata D.A. Buttry, Determination of ion populations and solvent content as functions of redox state and pH in polyaniline, J. Am. Chem. Soc., 109 (1987) 3574-3581.

DOI: https://doi.org/10.1021/ja00246a013

[26] P. Van Dong, C. Ha, L. Binh, J. Kasbohm, Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles, Int. Nano Lett., 2 (2012) 1-9.

DOI: https://doi.org/10.1186/2228-5326-2-9

[27] Y. Furukawa, F. Ueda, Y. Hyodo, I. Harada, Vibrational spectra and structure of polyaniline, Macromolecules, 21 (1988) 1297-1305.

DOI: https://doi.org/10.1021/ma00183a020

[28] Y. Cao, S. Li, Z. Xue, D. Guo, Spectroscopic and electrical characterization of some aniline oligomers and polyaniline, Synth. Met., 16 (1986) 305-315.

DOI: https://doi.org/10.1016/0379-6779(86)90167-0

[29] P. Vijayanand, J. Vivekanandan, V. Ponnusamy, A. Mahudeswaran, Synthesis , characterization and conductivity study of polyaniline prepared by chemical oxidative and electrochemical methods, Arch. Appl. Sci. Res., 3 (2011) 147-153.

[30] S.Y. Park, M.S. Cho, H.J. Choi, Synthesis and electrical characteristics of polyaniline nanoparticles and their polymeric composite, Curr. Appl. Phys., 4 (2004) 581-583.

[31] G. Neelgund, E. Hrehorova, M. Joyce, V. Bliznyuk, Synthesis and characterization of polyaniline derivative and silver nanoparticle composites, Polym. Int., 57 (2008) 1083-1089.

DOI: https://doi.org/10.1002/pi.2445

[32] H.K. Hassan, N.F. Atta, A. Galal, Electropolymerization of aniline over chemically converted graphene-systematic study and effect of dopant, Int. J. Electrochem. Sci., 7 (2012) 11161-11181.

[33] K.M. Molapo, P.M. Ndangili, R.F. Ajayi, G. Mbambisa, S.M. Mailu, N. Njomo, M. Masikini, P. Baker, E.I. Iwuoha, Electronics of conjugated polymers (I): Polyaniline, Int. J. Electrochem. Sci., 7 (2012) 11859-11875.

[34] N.P.S. Chauhan, R. Ameta, R. Ameta, S.C. Ameta, Thermal and conducting behaviour of emeraldine base (EB) form of polyaniline (PANI), Indian J. Chem. Technol., 18 (2011) 118-122.

[35] S. Admassie, O. Inganäs, W. Mammo, E. Perzon, M.R. Andersson, Electrochemical and optical studies of the band gaps of alternating polyfluorene copolymers, Synth. Met., 156 (2006) 614-623.

DOI: https://doi.org/10.1016/j.synthmet.2006.02.013

[36] P. Daubinger, J. Kieninger, T. Unmüssig, G.A. Urban, Electrochemical characteristics of nanostructured platinum electrodes - a cyclic voltammetry study., Phys. Chem. Chem. Phys., 16 (2014) 8392-8399.

DOI: https://doi.org/10.1039/c4cp00342j

[37] A. Motheo, J. Santos, E. Venancio, L.H. Mattoso, Influence of different types of acidic dopant on the electrodeposition and properties of polyaniline films, Polymer, 39 (1998) 6977-6982.

DOI: https://doi.org/10.1016/s0032-3861(98)00086-x

[38] H. Larsson, M. Sharp, Charge propagation in [Os(bpy)2(PVP)xCl]Cl polymers. An example of mean field behavior in a system with constrained diffusion of redox sites, J. Electroanal. Chem., 381 (1995) 133-142.

DOI: https://doi.org/10.1016/0022-0728(94)03654-l

[39] H.D. Abruna, Coordination chemistry in two dimensions: Chemically modified electrodes, Coord. Chem. Rev., 86 (1988) 135-189.

DOI: https://doi.org/10.1016/0010-8545(88)85013-6

[40] A.W. Bott, Electrochemical techniques for the characterization of redox polymers, Curr. Sep., 19 (2001) 71-75.

[41] A.J. Bard, L.R. Faulkner, Electrochemical methods: Fundamentals and applications (2nd ed); John & Sons, Inc.: New York (2001).

[42] R. Valaski, S. Ayoub, L. Micaroni, I.A. Hummelgen, Influence of film thickness on charge transport of electrodeposited polypyrrole thin films, Thin Solid Films, 415 (2002) 206-210.

DOI: https://doi.org/10.1016/s0040-6090(02)00553-9

[43] Monk, P. M, Fundamentals of electroanalytical chemistry. Chichester, New York: John Wiley & Sons Ltd (2001).

[44] D. Bejan, A. Duca, Voltammetry of aniline with different electrodes and electrolytes, Croat. Chem. Acta, 71 (1998) 745-756.

[45] F.N. Crespilho, R.M. Iost, S.A. Travain, O.N. Oliveira Jr., V. Zucolotto, Enzyme immobilization on Ag nanoparticles/polyaniline nanocomposites., Biosens. Bioelectron., 24 (2009) 3073-3077.

DOI: https://doi.org/10.1016/j.bios.2009.03.026

[46] Y.B. Wankhede, S.B. Kondawar, S.R. Thakare, P.S. More, Synthesis and characterization of silver nanoparticles embedded in polyaniline nanocomposite, DOI 10. 5185/amlett. 2012. icnano. 108 Synth., (2012) 1-11.

DOI: https://doi.org/10.5185/amlett.2013.icnano.108

[47] S.M. Reda, S.M. Al-ghannam, Synthesis and electrical properties of polyaniline composite with silver nanoparticles, Adv. Mater. Phys. Chem., 2 (2012) 75-81.

[49] S. Dhibar, C.K. Das, Silver nanoparticles decorated polyaniline/multiwalled carbon nanotubes nanocomposite for high-performance supercapacitor electrode, Ind. Eng. Chem. Res., 53(2014) 3495-3508.

DOI: https://doi.org/10.1021/ie402161e