Carbon Nanotube Interconnects with Air-Gaps: Effect on Thermal Stability, Delay and Area

Abstract:

Article Preview

This paper presents single walled carbon nanotube (SWCNT) interconnects with air as dielectric medium. We treat CNT interconnects as a discrete (fractal) media for the first time where continuum based differential equations fail to capture the physics at nanoscale and hence, we use discrete partial differential equations in this work. We have analyzed the effect of air gaps (AG) on performance factors like temperature dependent resistance R(T) of CNTs and hence the R(T)C delay of the interconnects. We have first calculated the temperature coefficient of resistance (TCR) of CNTs and analyzed the trend of changing resistance at different ambient temperatures. The R(T)C delay shows that CNT/AG interconnects can operate satisfactorily up to 500K. We then compare the R(T)C delay with ITRS predictions from 17nm to 8nm technology nodes. We have also calculated the chip area used by CNT/air-gap interconnects and found that they take up to 83% lesser area than the conventional Cu/low-k interconnects.

Info:

Periodical:

Pages:

29-37

Citation:

P. U. Sathyakam and P. S. Mallick, "Carbon Nanotube Interconnects with Air-Gaps: Effect on Thermal Stability, Delay and Area", Journal of Nano Research, Vol. 48, pp. 29-37, 2017

Online since:

July 2017

Export:

Price:

$38.00

* - Corresponding Author

[1] International Technology roadmap for Semiconductors (ITRS), 2013, www. itrs. net/reports. html [Available Online].

[2] D. Shamriyan, T. Abeli, F. Iacopi, K. Maex, Low-k dielectric materials, Materials Today, 7, (2004) 34-39.

[3] A. Srivastava, , Y. Xu, A. K. Sharma, Carbon nanotubes for next generation very large scale integration interconnects, J. Nanophotonics, 4, 041690 (2010) 1-26.

DOI: https://doi.org/10.1117/1.3446896

[4] P. U. Sathyakam, P. S. Mallick, Towards realisation of mixed carbon nanotube bundles as VLSI interconnects: A review, Nano Commun. Netw., 3 (2012) 175-182.

DOI: https://doi.org/10.1016/j.nancom.2012.09.004

[5] A. Cyhan, A. Naeemi, Cu Interconnect Limitations and Opportunities for SWNT Interconnects at the End of the Roadmap, IEEE Trans. on Electron Dev., 60 (2013) 374-382.

DOI: https://doi.org/10.1109/ted.2012.2224663

[6] G. F. Close, S. Yasuda, B. Paul, S. Fujita, H. -S. P. Wong, A 1 GHz Integrated Circuit with Carbon Nanotube Interconnects and Silicon Transistors, Nano Lett., 8 (2008) 706 – 709.

DOI: https://doi.org/10.1021/nl0730965

[7] E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature, Nano Lett., 6 (2006) 96-100.

DOI: https://doi.org/10.1021/nl052145f

[8] K. M. Mohsin, A. Srivastava, Characterization of SWCNT Bundle Based VLSI Interconnect with Self-heating Induced Scatterings, ACM/SIGDA Proc. of GLSVLSI, (2015) 265-270, doi: 10. 1145/2742060. 2742074.

DOI: https://doi.org/10.1145/2742060.2742074

[9] K. M. Mohsin, A. Srivastava, A. K. Sharma, C. Mayberry, A Thermal Model for Carbon Nanotube Interconnects, Nanomaterials, 3, (2013) 229-241.

DOI: https://doi.org/10.3390/nano3020229

[10] Mohsin, K.M., Srivastava, A., Sharma, A.K. and Mayberry, C., Characterization of MWCNT VLSI Interconnect with Self-heating Induced Scatterings, Proc. of 2014 IEEE Computer Society Annual Symposium on VLSI, (2014).

DOI: https://doi.org/10.1109/isvlsi.2014.31

[11] M. Majumder, N. Chopra, R. Andrews B. J. Hinds, Enhanced flow in carbon nanotubes, Nature, 438, (2005), 44.

DOI: https://doi.org/10.1038/43844a

[12] H. Y. Liu, J. H. He and Z. B. Li, Fractional calculus for nanoscale flow and heat transfer, International Journal of Numerical Methods for Heat & Fluid Flow, 24, (2014), 1227.

DOI: https://doi.org/10.1108/hff-07-2013-0240

[13] J. D. Gabano and T. Poinot, Fractional modelling applied to heat conductivity and diffusivity estimation, Physica Scripta, T136, (2009), 014015.

DOI: https://doi.org/10.1088/0031-8949/2009/t136/014015

[14] J. H. He, A Tutorial Review on Fractal Spacetime and Fractional Calculus, Int J Theor Phys, 53, (2014), 3698.

[15] D. Sierociuk, A. Dzieliński, G. Sarwas, I. Petras, I. Podlubny and T. Skovranek, Modelling heat transfer in heterogeneous media using fractional calculus, Phil Trans R Soc A, 371, (2012), 20120146.

DOI: https://doi.org/10.1098/rsta.2012.0146

[16] Y. Hu and J. H. He, on fractal space-time and fractional calculus, Thermal Science, 20, (2016), 773.

[17] A. Naeemi, J. Meindl, Physical Modeling of Temperature Coefficient of Resistance for Single- and Multi-Wall Carbon Nanotube Interconnects, IEEE Electron Dev. Lett., 28, (2007) 135-138.

DOI: https://doi.org/10.1109/led.2006.889240

[18] W. C. Chen, W. Y. Yin, L. Jia, Q. H. Liu, Electrothermal Characterization of Single-Walled Carbon Nanotube (SWCNT) Interconnect Arrays, IEEE Trans. on Nanotechnol., 8, (2009) 718 – 728.

DOI: https://doi.org/10.1109/tnano.2009.2019725

[19] K. Singh, B. Raj, Influence of temperature on MWCNT bundle, SWCNT bundle and copper interconnects for nanoscaled technology nodes, J. of Materials Science: Materials in Electronics, 26, (2015) 6134-6142.

DOI: https://doi.org/10.1007/s10854-015-3193-y

[20] http: /ptm. asu. edu/ [Available Online].

[21] A. Karthikeyan and P. S. Mallick, Optimization Techniques for CNT Based VLSI Interconnects — A Review, Journal of Circuits, Systems, and Computers, 26, (2017), 1730002-1.

DOI: https://doi.org/10.1142/s0218126617300021

Fetching data from Crossref.
This may take some time to load.